Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Open Circuit Fault Diagnosis of Cascaded H-Bridge MLI Using k-NN Classifier Based on PPCA

  • Conference paper
  • First Online:
The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018) (AMLTA 2018)

Abstract

Nowadays, great progress has been made in the development of multilevel inverters in renewable energy sources and other electrical drive applications. A k-Nearest Neighbors (k-NN) algorithm is applied to fault diagnosis of Cascaded H-Bridge Multilevel Inverter (CHMLI), this new fault diagnosis method is based on Probabilistic Principle Component Analysis (PPCA). The output voltage signals under different fault conditions of CHMLI are taken as the fault characteristics signals to avoid the effect of load variation on fault diagnosis. PPCA is used to optimize the data without changing the original properties of the input data, and k-NN is used to identify the accurate fault location and diagnosis the fault. The proposed technique is validated by conducting the experiment using Field-Programmable Gate Array (FPGA) controller. The simulation and experimental results shows that the proposed fault diagnosis method reduced the fault diagnosis time and improved the accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mariethoz, S.: Systematic design of high-performance hybrid cascaded multilevel inverters with active voltage balance and minimum switching losses. IEEE Trans. Power Electron. 28, 3100–3113 (2013)

    Article  Google Scholar 

  2. Khomfoi, S., Tolbert, L.M.: Fault diagnosis and reconfiguration for multilevel inverter drive using AI-based techniques. IEEE Trans. Ind. Electron. 54, 2954–2968 (2007)

    Article  Google Scholar 

  3. Khomfoi, S., Tolbert, L.M.: Fault diagnostic system for a multilevel inverter using a neural network. IEEE Trans. Power Electron. 22, 1062–1069 (2007)

    Article  Google Scholar 

  4. Wang, T., Xu, H., Han, J., Elbouchikhi, E., Benbouzid, M.E.H.: Cascaded H-bridge multilevel inverter system fault diagnosis using a PCA and multiclass relevance vector machine approach. IEEE Trans. Power Electron. 30, 7006–7018 (2015)

    Article  Google Scholar 

  5. Lu, B., Sharma, S.K.: A literature review of IGBT fault diagnostic and protection methods for power inverters. IEEE Trans. Ind. Appl. 45(5), 1770–1777 (2009)

    Article  Google Scholar 

  6. Keswani, R.A., Suryawanshi, H.M., Ballal, M.S.: Multi-resolution analysis for converter switch faults identification. IET Power Electron. 8(5), 783–792 (2015)

    Article  Google Scholar 

  7. Keswani, R.A., Suryawanshi, H.M., Ballal, M.S., Renge, M.M.: Wavelet modulus maxima for single switch open fault in multi-level inverter. Electric Power Compon. Syst. 42(9), 889–900 (2014)

    Article  Google Scholar 

  8. Lezana, P., Pou, J., Meynard, T.A., Rodriguez, J., Ceballos, S., Richardeau, F.: Survey on fault operation on multilevel inverters. IEEE Trans. Ind. Electron. 57(7), 2207–2218 (2010)

    Article  Google Scholar 

  9. Palanivel, P., Dash, S.S.: Analysis of THD and output voltage performance for cascaded multilevel inverter using carrier pulse width modulation techniques. IET Power Electron. 4, 951–958 (2011)

    Article  Google Scholar 

  10. Tipping, M.E., Bishop, C.M.: Mixtures of Probabilistic Principle Component Analysers, pp. 443–482. MIT Press, Cambridge (2006)

    Google Scholar 

  11. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. R. Stat. Soc. 61(3), 611–622 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benameur, S., Mignotte, M., Destrempes, F., Guise, J.A.D.: Three-dimensional biplanar reconstruction of scoliotic rib cage using the estimation of a mixture of probabilistic prior models. IEEE Trans. Biomed. Eng. 52, 1713–1728 (2005)

    Article  Google Scholar 

  13. Jon, E., Kim, D.K., Kim, N.S.: Robust correlation estimation for EMAP-based speaker adaptation. IEEE Sig. Process. Lett. 8, 184–186 (2001)

    Article  Google Scholar 

  14. Kim, D.K., Kim, N.S.: Rapid speaker adaptation using probabilistic principal component analysis. IEEE Sig. Process. Lett. 8, 180–183 (2001)

    Article  Google Scholar 

  15. He, Q.P., Wang, J.: Fault detection using the k-Nearest neighbor rule for semiconductor manufacturing processes. IEEE Trans. Semicond. Manuf. 20(4), 345–354 (2007)

    Article  Google Scholar 

  16. Zhou, Z., Wen, C., Yang, C.: Fault detection using random projections and k-Nearest neighbor rule for semiconductor manufacturing processes. IEEE Trans. Semicond. Manuf. 28(1), 70–79 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 51577046, The State Key Program of National Natural Science Foundation of China under Grant No. 51637004, The national key research and development plan “Important Scientific Instruments and Equipment Development” of China Under Grant No. 2016YFF0102200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigang He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuraku, N.V.P., Ali, M., He, Y. (2018). Open Circuit Fault Diagnosis of Cascaded H-Bridge MLI Using k-NN Classifier Based on PPCA. In: Hassanien, A., Tolba, M., Elhoseny, M., Mostafa, M. (eds) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018). AMLTA 2018. Advances in Intelligent Systems and Computing, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-74690-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74690-6_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74689-0

  • Online ISBN: 978-3-319-74690-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics