Abstract
Spectral clustering is a clustering method based on algebraic graph theory. The clustering effect by using spectral method depends heavily on the description of similarity between instances of the datasets. Althought, spectral clustering has gained considerable attentions in the recent past, but the raw spectral clustering is often based on Euclidean distance, but it is impossible to accurately reflect the complexity of the data. Despite having a well-defined mathematical framework, good performance and simplicity, it suffers from several drawbacks, such as it is unable to determine a reasonable cluster number, sensitive to initial condition and not robust to outliers. Owing to the limitations of the feature space in multispectral images and spectral overlap of the clusters, it is required to use some additional information such as the spatial context in image clustering. In this paper, we present a new approach named spatial-spectral fuzzy clustering (SSFC) which combines spectral clustering and fuzzy clustering with local information into a unified framework to solve these problems and also using fuzzy clustering algorithm to converge the global optimization, this method is simple in computation but quite effective when solving segmentation problems on satellite imagery. Making it to find the spatial distribution characteristics of complex data and can further make cluster more stable. Experimental results show that it can improve the clustering accuracy and avoid falling into local optimum.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li, Y., Liu, X., Yan, X.: A modified spectral clustering algorithm based on density. In: Zu, Q., Hu, B. (eds.) HCC 2016. LNCS, vol. 9567, pp. 901–906. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31854-7_97
Kuo, C.-T., Walker, P.B., Carmichael, O., Davidson, I.: Spectral clustering for medical imaging. In: 2014 IEEE International Conference on Data Mining, pp. 887–892 (2014). https://doi.org/10.1109/icdm.2014.143. 1550-4786/14 $31.00 © 2014 IEEE
Peluffo-Ordóñez, D.H., Alvarado-Pérez, J.C., Castro-Ospina, A.E.: On the spectral clustering for dynamic data. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, Fco.Javier, Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9108, pp. 148–155. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18833-1_16
Liu, C.-A., Guo, Z., Liu, C., Zhou, H.: An image-segmentation method based on improved spectral clustering algorithm. In: Qi, L. (ed.) ISIA 2010. CCIS, vol. 86, pp. 178–184. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19853-3_26
Fatemi, S.B., Mobasheri, M.R., Abkar, A.A.: Clustering multispectral images using spatial–spectral information. IEEE Geosci. Remote Sens. Lett. 12(7), 1521–1525 (2015). https://doi.org/10.1109/lgrs.2015.2411558
Bo, H., Zhang, J., Wang, X.: Improving spectral clustering algorithm based SAR spill oil image segmentation. In: 2011 IEEE International Conference on Network Computing and Information Security. IEEE. https://doi.org/10.1109/ncis.2011.172
Zhao, F., Liu, H., Jiao, L.: Spectral clustering with fuzzy similarity measure. Dig. Signal Process. 21, 701–709 (2011). https://doi.org/10.1016/j.dsp.2011.07.002
Yang, P., Zhu, Q., Huang, B.: Spectral clustering with density sensitive similarity function. Knowl. Based Syst. 24, 621–628 (2011). https://doi.org/10.1016/j.knosys.2011.01.009
Liu, H.Q., Jiao, L.C., Zhao, F.: Non-local spatial spectral clustering for image segmentation. Neurocomputing 74, 461–471 (2010). https://doi.org/10.1016/j.neucom.2010.08.021
Higham, D.J., Kalna, G., Kibble, M.: Spectral clustering and its use in bioinformatics. J. Comput. Appl. Math. 204, 25–37 (2007). https://doi.org/10.1016/j.cam.2006.04.026
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000). https://doi.org/10.1109/34.868688
Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14. MIT Press (2002)
Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the Nystrom method. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 214–225 (2004). https://doi.org/10.1109/TPAMI.2004.1262185
Yan, J., Cheng, D., Zong, M., Deng, Z.: Improved spectral clustering algorithm based on similarity measure. In: Luo, X., Yu, J.X., Li, Z. (eds.) ADMA 2014. LNCS (LNAI), vol. 8933, pp. 641–654. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14717-8_50
Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009). 1053-5888/09/$25.00©2009IEEE
Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)
Tirandaz, Z., Akbarizadeh, G.: Unsupervised texture-based SAR image segmentation using spectral regression and gabor filter bank. J. Indian Soc. Remote Sens. 44, 177 (2016). https://doi.org/10.1007/s12524-015-0490-0
Ma, M., Liang, J., Guo, M., Fan, Y., Yin, Y.: SAR image segmentation based on Artificial Bee Colony algorithm. Appl. Soft Comput. 11(8), 5205–5214 (2011). https://doi.org/10.1016/j.asoc.2011.05.039
Karantzalos, K., Argialas, D.: Automatic detection and tracking of oil spills in SAR imagery with level set segmentation. Int. J. Remote Sens. 29(21), 6281–6296 (2008). https://doi.org/10.1080/01431160802175488
Boldt, M., Thiele, A., Schulz, K., Hinz, S.: SAR image segmentation using morphological attribute profiles. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XL-3, 39–44 (2014). ISPRS Technical Commission III Symposium, Zurich, Switzerland
Rendón, E., Abundez, I., Arizmendi, A., Quiroz, E.M.: Internal versus external cluster validation indexes. Int. J. Comput. Commun. 5(1), 27–34 (2011)
Chou, C.H., Su, M.C., Lai, E.: A new cluster validity measure and its application to image compression. Pattern Anal. Appl. 7, 205–220 (2004). https://doi.org/10.1007/s10044-004-0218-1
Mai, S.D., Ngo, L.T.: Interval type-2 Fuzzy C-means clustering with spatial information for land-cover classification. In: Nguyen, N.T., Trawiński, B., Kosala, R. (eds.) ACIIDS 2015. LNCS (LNAI), vol. 9011, pp. 387–397. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15702-3_38
Mai, D.S., Ngo, L.T.: Semi-supervised Fuzzy C-means Clustering for change detection from multispectral satellite image. In: 2015 IEEE International Conference on Fuzzy Systems, pp. 1–8 (2015). https://doi.org/10.1109/fuzz-ieee.2015.7337978
Mai, D.-S., Trinh, L.-H., Ngo, L.-T.: Combining fuzzy probability and Fuzzy clustering for multispectral satellite imagery classification. Vietnam J. Sci. Technol. 54(3), 300–313 (2016). https://doi.org/10.15625/0866-708x/54/3/6463. ISSN 0866-708x
Acknowledgements
This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.05-2016.09.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Mai, S.D., Ngo, L.T., Le Trinh, H. (2018). Satellite Image Classification Based Spatial-Spectral Fuzzy Clustering Algorithm. In: Nguyen, N., Hoang, D., Hong, TP., Pham, H., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2018. Lecture Notes in Computer Science(), vol 10752. Springer, Cham. https://doi.org/10.1007/978-3-319-75420-8_48
Download citation
DOI: https://doi.org/10.1007/978-3-319-75420-8_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-75419-2
Online ISBN: 978-3-319-75420-8
eBook Packages: Computer ScienceComputer Science (R0)