Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Satellite Image Classification Based Spatial-Spectral Fuzzy Clustering Algorithm

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2018)

Abstract

Spectral clustering is a clustering method based on algebraic graph theory. The clustering effect by using spectral method depends heavily on the description of similarity between instances of the datasets. Althought, spectral clustering has gained considerable attentions in the recent past, but the raw spectral clustering is often based on Euclidean distance, but it is impossible to accurately reflect the complexity of the data. Despite having a well-defined mathematical framework, good performance and simplicity, it suffers from several drawbacks, such as it is unable to determine a reasonable cluster number, sensitive to initial condition and not robust to outliers. Owing to the limitations of the feature space in multispectral images and spectral overlap of the clusters, it is required to use some additional information such as the spatial context in image clustering. In this paper, we present a new approach named spatial-spectral fuzzy clustering (SSFC) which combines spectral clustering and fuzzy clustering with local information into a unified framework to solve these problems and also using fuzzy clustering algorithm to converge the global optimization, this method is simple in computation but quite effective when solving segmentation problems on satellite imagery. Making it to find the spatial distribution characteristics of complex data and can further make cluster more stable. Experimental results show that it can improve the clustering accuracy and avoid falling into local optimum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, Y., Liu, X., Yan, X.: A modified spectral clustering algorithm based on density. In: Zu, Q., Hu, B. (eds.) HCC 2016. LNCS, vol. 9567, pp. 901–906. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31854-7_97

    Chapter  Google Scholar 

  2. Kuo, C.-T., Walker, P.B., Carmichael, O., Davidson, I.: Spectral clustering for medical imaging. In: 2014 IEEE International Conference on Data Mining, pp. 887–892 (2014). https://doi.org/10.1109/icdm.2014.143. 1550-4786/14 $31.00 © 2014 IEEE

  3. Peluffo-Ordóñez, D.H., Alvarado-Pérez, J.C., Castro-Ospina, A.E.: On the spectral clustering for dynamic data. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo-Moreo, Fco.Javier, Adeli, H. (eds.) IWINAC 2015. LNCS, vol. 9108, pp. 148–155. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18833-1_16

    Chapter  Google Scholar 

  4. Liu, C.-A., Guo, Z., Liu, C., Zhou, H.: An image-segmentation method based on improved spectral clustering algorithm. In: Qi, L. (ed.) ISIA 2010. CCIS, vol. 86, pp. 178–184. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19853-3_26

    Chapter  Google Scholar 

  5. Fatemi, S.B., Mobasheri, M.R., Abkar, A.A.: Clustering multispectral images using spatial–spectral information. IEEE Geosci. Remote Sens. Lett. 12(7), 1521–1525 (2015). https://doi.org/10.1109/lgrs.2015.2411558

    Article  Google Scholar 

  6. Bo, H., Zhang, J., Wang, X.: Improving spectral clustering algorithm based SAR spill oil image segmentation. In: 2011 IEEE International Conference on Network Computing and Information Security. IEEE. https://doi.org/10.1109/ncis.2011.172

  7. Zhao, F., Liu, H., Jiao, L.: Spectral clustering with fuzzy similarity measure. Dig. Signal Process. 21, 701–709 (2011). https://doi.org/10.1016/j.dsp.2011.07.002

    Article  Google Scholar 

  8. Yang, P., Zhu, Q., Huang, B.: Spectral clustering with density sensitive similarity function. Knowl. Based Syst. 24, 621–628 (2011). https://doi.org/10.1016/j.knosys.2011.01.009

    Article  Google Scholar 

  9. Liu, H.Q., Jiao, L.C., Zhao, F.: Non-local spatial spectral clustering for image segmentation. Neurocomputing 74, 461–471 (2010). https://doi.org/10.1016/j.neucom.2010.08.021

    Article  Google Scholar 

  10. Higham, D.J., Kalna, G., Kibble, M.: Spectral clustering and its use in bioinformatics. J. Comput. Appl. Math. 204, 25–37 (2007). https://doi.org/10.1016/j.cam.2006.04.026

    Article  MathSciNet  MATH  Google Scholar 

  11. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000). https://doi.org/10.1109/34.868688

    Article  Google Scholar 

  12. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14. MIT Press (2002)

    Google Scholar 

  13. Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the Nystrom method. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 214–225 (2004). https://doi.org/10.1109/TPAMI.2004.1262185

    Article  Google Scholar 

  14. Yan, J., Cheng, D., Zong, M., Deng, Z.: Improved spectral clustering algorithm based on similarity measure. In: Luo, X., Yu, J.X., Li, Z. (eds.) ADMA 2014. LNCS (LNAI), vol. 8933, pp. 641–654. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14717-8_50

    Google Scholar 

  15. Wang, Z., Bovik, A.C.: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009). 1053-5888/09/$25.00©2009IEEE

    Article  Google Scholar 

  16. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)

    Article  Google Scholar 

  17. Tirandaz, Z., Akbarizadeh, G.: Unsupervised texture-based SAR image segmentation using spectral regression and gabor filter bank. J. Indian Soc. Remote Sens. 44, 177 (2016). https://doi.org/10.1007/s12524-015-0490-0

    Article  Google Scholar 

  18. Ma, M., Liang, J., Guo, M., Fan, Y., Yin, Y.: SAR image segmentation based on Artificial Bee Colony algorithm. Appl. Soft Comput. 11(8), 5205–5214 (2011). https://doi.org/10.1016/j.asoc.2011.05.039

    Article  Google Scholar 

  19. Karantzalos, K., Argialas, D.: Automatic detection and tracking of oil spills in SAR imagery with level set segmentation. Int. J. Remote Sens. 29(21), 6281–6296 (2008). https://doi.org/10.1080/01431160802175488

    Article  Google Scholar 

  20. Boldt, M., Thiele, A., Schulz, K., Hinz, S.: SAR image segmentation using morphological attribute profiles. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. XL-3, 39–44 (2014). ISPRS Technical Commission III Symposium, Zurich, Switzerland

    Article  Google Scholar 

  21. Rendón, E., Abundez, I., Arizmendi, A., Quiroz, E.M.: Internal versus external cluster validation indexes. Int. J. Comput. Commun. 5(1), 27–34 (2011)

    Google Scholar 

  22. Chou, C.H., Su, M.C., Lai, E.: A new cluster validity measure and its application to image compression. Pattern Anal. Appl. 7, 205–220 (2004). https://doi.org/10.1007/s10044-004-0218-1

    Article  MathSciNet  Google Scholar 

  23. Mai, S.D., Ngo, L.T.: Interval type-2 Fuzzy C-means clustering with spatial information for land-cover classification. In: Nguyen, N.T., Trawiński, B., Kosala, R. (eds.) ACIIDS 2015. LNCS (LNAI), vol. 9011, pp. 387–397. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15702-3_38

    Google Scholar 

  24. Mai, D.S., Ngo, L.T.: Semi-supervised Fuzzy C-means Clustering for change detection from multispectral satellite image. In: 2015 IEEE International Conference on Fuzzy Systems, pp. 1–8 (2015). https://doi.org/10.1109/fuzz-ieee.2015.7337978

  25. Mai, D.-S., Trinh, L.-H., Ngo, L.-T.: Combining fuzzy probability and Fuzzy clustering for multispectral satellite imagery classification. Vietnam J. Sci. Technol. 54(3), 300–313 (2016). https://doi.org/10.15625/0866-708x/54/3/6463. ISSN 0866-708x

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.05-2016.09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinh Dinh Mai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mai, S.D., Ngo, L.T., Le Trinh, H. (2018). Satellite Image Classification Based Spatial-Spectral Fuzzy Clustering Algorithm. In: Nguyen, N., Hoang, D., Hong, TP., Pham, H., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2018. Lecture Notes in Computer Science(), vol 10752. Springer, Cham. https://doi.org/10.1007/978-3-319-75420-8_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75420-8_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75419-2

  • Online ISBN: 978-3-319-75420-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics