Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Comparative Error Analysis of Parser Outputs on Telugu Dependency Treebank

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9623))

  • 1385 Accesses

Abstract

We present a comparative error analysis of two parsers - MALT and MST on Telugu Dependency Treebank data. MALT and MST are currently two of the most dominant data-driven dependency parsers. We discuss the performances of both the parsers in relation to Telugu language. We also talk in detail about both the algorithmic issues of the parsers as well as the language specific constraints of Telugu. The purpose is, to better understand how to help the parsers deal with complex structures, make sense of implicit language specific cues and build a more informed Treebank.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    MALT version 1.8.1.

  2. 2.

    MST version 0.5.0.

  3. 3.

    http://homepages.inf.ed.ac.uk/lzhang10/maxent.html.

  4. 4.

    LAS – Labeled Attachment Score.

  5. 5.

    UAS – Unlabeled Attachment Score.

  6. 6.

    LS - Labeled Score.

References

  1. Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S., Marsi, E.: Maltparser: a language-independent system for data-driven dependency parsing. Nat. Lang. Eng. 13, 95–135 (2007)

    Google Scholar 

  2. McDonald, R., Pereira, F., Ribarov, K., Hajič, J.: Non-projective dependency parsing using spanning tree algorithms. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing. HLT 2005, Stroudsburg, PA, USA, Association for Computational Linguistics,pp. 523–530 (2005)

    Google Scholar 

  3. McDonald, R.T., Nivre, J.: Characterizing the errors of data-driven dependency parsing models. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning EMNLP-CoNLL, pp. 122–131 (2007)

    Google Scholar 

  4. Husain, S., Agrawal, B.: Analyzing parser errors to improve parsing accuracy and to inform tree banking decisions. Linguistic Issues in Language Technology, 7 (2012)

    Google Scholar 

  5. Vempaty, C., Naidu, V., Husain, S., Kiran, R., Bai, L., Sharma, D.M., Sangal, R.: Issues in analyzing Telugu sentences towards building a Telugu treebank. In: Gelbukh, A. (ed.) CICLing 2010. LNCS, vol. 6008, pp. 50–59. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12116-6_5

    Chapter  Google Scholar 

  6. Nivre, J.: Inductive dependency parsing. Text, Speech and Language Technology, vol. 34. Springer, Netherlands (2006)

    Google Scholar 

  7. Black, E., Jelinek, F., Lafferty, J., Magerman, D.M., Mercer, R., Roukos, S.: Towards history-based grammars: using richer models for probabilistic parsing. In: Proceedings of the Workshop on Speech and Natural Language. HLT 1991, Stroudsburg, PA, USA, Association for Computational Linguistics, pp. 134–139 (1992)

    Google Scholar 

  8. Kudo, T., Matsumoto, Y.: Japanese dependency analysis using cascaded chunking. In: Proceedings of the 6th Conference on Natural Language Learning, vol. 20. COLING 2002, Stroudsburg, PA, USA. Association for Computational Linguistics, pp. 1–7 (2002)

    Google Scholar 

  9. Chu, Y.J., Liu, T.H.: On shortest arborescence of a directed graph. Sci. Sinica 14, 1396 (1965)

    MathSciNet  MATH  Google Scholar 

  10. Edmonds, J.: Optimum branchings. J. Res. Natil Bur. Stan. B 71, 233–240 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eisner, J.M.: Three new probabilistic models for dependency parsing: an exploration. In: Proceedings of the 16th Conference on Computational Linguistics, vol. 1. Association for Computational Linguistics, pp. 340–345 (1996)

    Google Scholar 

  12. McDonald, R., Crammer, K., Pereira, F.: Online large-margin training of dependency parsers. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, pp. 91–98 (2005)

    Google Scholar 

  13. Garapati, U.R., Koppaka, R., Addanki, S.: Dative case in Telugu: a parsing perspective. In: Proceedings of the Workshop on Machine Translation and Parsing in Indian Languages (MTPIL 2012), COLING 2012, pp. 123-132, Mumbai (2012)

    Google Scholar 

  14. Husain, S., Mannem, P., Ambati, B.R., Gadde, P.: The ICON-2010 tools contest on Indian language dependency parsing. In: Proceedings of ICON-2010 Tools Contest on Indian Language Dependency Parsing, ICON, vol. 10, pp. 1-8. Citeseer (2010)

    Google Scholar 

  15. Bharati, A., Chaitanya, V., Sangal, R., Ramakrishnamacharyulu, K.: Natural Language Processing: A Paninian Perspective. Prentice-Hall of India, New Delhi (1995)

    Google Scholar 

  16. Chaudhry, H., Sharma, H., Sharma, D.M.: Divergences in English-Hindi parallel dependency treebanks. DepLing 2013, 33 (2013)

    Google Scholar 

  17. Ambati, B.R., Husain, S., Nivre, J., Sangal, R.: On the role of morphosyntactic features in Hindi dependency parsing. In: Proceedings of the NAACL HLT 2010 First Workshop on Statistical Parsing of Morphologically-Rich Languages. Association for Computational Linguistics, pp. 94–102 (2010)

    Google Scholar 

  18. Ambati, B.R., Gadde, P., Jindal, K.: Experiments in Indian language dependency parsing. In: Proceedings of the ICON-2009 NLP Tools Contest: Indian Language Dependency Parsing, pp. 32–37 (2009)

    Google Scholar 

  19. Bhat, R.A., Sharma, D.M.: Non-projective structures in Indian language treebanks. In: The 11th International Workshop on Treebanks and Linguistic Theories, Edições Colibri, pp. 25–30 (2012)

    Google Scholar 

Download references

Acknowledgment

We thank Riyaz Ahmad Bhat, Vigneshwaran Muralidharan and Irshad Ahmad Bhat for their assistance and comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silpa Kanneganti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kanneganti, S., Chaudhry, H., Misra Sharma, D. (2018). Comparative Error Analysis of Parser Outputs on Telugu Dependency Treebank. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2016. Lecture Notes in Computer Science(), vol 9623. Springer, Cham. https://doi.org/10.1007/978-3-319-75477-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75477-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75476-5

  • Online ISBN: 978-3-319-75477-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics