Abstract
We present a comparative error analysis of two parsers - MALT and MST on Telugu Dependency Treebank data. MALT and MST are currently two of the most dominant data-driven dependency parsers. We discuss the performances of both the parsers in relation to Telugu language. We also talk in detail about both the algorithmic issues of the parsers as well as the language specific constraints of Telugu. The purpose is, to better understand how to help the parsers deal with complex structures, make sense of implicit language specific cues and build a more informed Treebank.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
MALT version 1.8.1.
- 2.
MST version 0.5.0.
- 3.
- 4.
LAS – Labeled Attachment Score.
- 5.
UAS – Unlabeled Attachment Score.
- 6.
LS - Labeled Score.
References
Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S., Marsi, E.: Maltparser: a language-independent system for data-driven dependency parsing. Nat. Lang. Eng. 13, 95–135 (2007)
McDonald, R., Pereira, F., Ribarov, K., Hajič, J.: Non-projective dependency parsing using spanning tree algorithms. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing. HLT 2005, Stroudsburg, PA, USA, Association for Computational Linguistics,pp. 523–530 (2005)
McDonald, R.T., Nivre, J.: Characterizing the errors of data-driven dependency parsing models. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning EMNLP-CoNLL, pp. 122–131 (2007)
Husain, S., Agrawal, B.: Analyzing parser errors to improve parsing accuracy and to inform tree banking decisions. Linguistic Issues in Language Technology, 7 (2012)
Vempaty, C., Naidu, V., Husain, S., Kiran, R., Bai, L., Sharma, D.M., Sangal, R.: Issues in analyzing Telugu sentences towards building a Telugu treebank. In: Gelbukh, A. (ed.) CICLing 2010. LNCS, vol. 6008, pp. 50–59. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12116-6_5
Nivre, J.: Inductive dependency parsing. Text, Speech and Language Technology, vol. 34. Springer, Netherlands (2006)
Black, E., Jelinek, F., Lafferty, J., Magerman, D.M., Mercer, R., Roukos, S.: Towards history-based grammars: using richer models for probabilistic parsing. In: Proceedings of the Workshop on Speech and Natural Language. HLT 1991, Stroudsburg, PA, USA, Association for Computational Linguistics, pp. 134–139 (1992)
Kudo, T., Matsumoto, Y.: Japanese dependency analysis using cascaded chunking. In: Proceedings of the 6th Conference on Natural Language Learning, vol. 20. COLING 2002, Stroudsburg, PA, USA. Association for Computational Linguistics, pp. 1–7 (2002)
Chu, Y.J., Liu, T.H.: On shortest arborescence of a directed graph. Sci. Sinica 14, 1396 (1965)
Edmonds, J.: Optimum branchings. J. Res. Natil Bur. Stan. B 71, 233–240 (1967)
Eisner, J.M.: Three new probabilistic models for dependency parsing: an exploration. In: Proceedings of the 16th Conference on Computational Linguistics, vol. 1. Association for Computational Linguistics, pp. 340–345 (1996)
McDonald, R., Crammer, K., Pereira, F.: Online large-margin training of dependency parsers. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, pp. 91–98 (2005)
Garapati, U.R., Koppaka, R., Addanki, S.: Dative case in Telugu: a parsing perspective. In: Proceedings of the Workshop on Machine Translation and Parsing in Indian Languages (MTPIL 2012), COLING 2012, pp. 123-132, Mumbai (2012)
Husain, S., Mannem, P., Ambati, B.R., Gadde, P.: The ICON-2010 tools contest on Indian language dependency parsing. In: Proceedings of ICON-2010 Tools Contest on Indian Language Dependency Parsing, ICON, vol. 10, pp. 1-8. Citeseer (2010)
Bharati, A., Chaitanya, V., Sangal, R., Ramakrishnamacharyulu, K.: Natural Language Processing: A Paninian Perspective. Prentice-Hall of India, New Delhi (1995)
Chaudhry, H., Sharma, H., Sharma, D.M.: Divergences in English-Hindi parallel dependency treebanks. DepLing 2013, 33 (2013)
Ambati, B.R., Husain, S., Nivre, J., Sangal, R.: On the role of morphosyntactic features in Hindi dependency parsing. In: Proceedings of the NAACL HLT 2010 First Workshop on Statistical Parsing of Morphologically-Rich Languages. Association for Computational Linguistics, pp. 94–102 (2010)
Ambati, B.R., Gadde, P., Jindal, K.: Experiments in Indian language dependency parsing. In: Proceedings of the ICON-2009 NLP Tools Contest: Indian Language Dependency Parsing, pp. 32–37 (2009)
Bhat, R.A., Sharma, D.M.: Non-projective structures in Indian language treebanks. In: The 11th International Workshop on Treebanks and Linguistic Theories, Edições Colibri, pp. 25–30 (2012)
Acknowledgment
We thank Riyaz Ahmad Bhat, Vigneshwaran Muralidharan and Irshad Ahmad Bhat for their assistance and comments that greatly improved the manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Kanneganti, S., Chaudhry, H., Misra Sharma, D. (2018). Comparative Error Analysis of Parser Outputs on Telugu Dependency Treebank. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2016. Lecture Notes in Computer Science(), vol 9623. Springer, Cham. https://doi.org/10.1007/978-3-319-75477-2_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-75477-2_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-75476-5
Online ISBN: 978-3-319-75477-2
eBook Packages: Computer ScienceComputer Science (R0)