Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Spatial Statistics of Term Co-occurrences for Location Prediction of Tweets

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10772))

Included in the following conference series:

Abstract

Predicting the locations of non-geotagged tweets is an active research area in geographical information retrieval. In this work, we propose a method to detect term co-occurrences in tweets that exhibit spatial clustering or dispersion tendency with significant deviation from the underlying single-term patterns, and use these co-occurrences to extend the feature space in probabilistic language models. We observe that using term pairs that spatially attract or repel each other yields significant increase in the accuracy of predicted locations. The method we propose relies purely on statistical approaches and spatial point patterns without using external data sources or gazetteers. Evaluations conducted on a large set of multilingual tweets indicate higher accuracy than the existing state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://dev.twitter.com/overview/api.

  2. 2.

    https://github.com/brendano/ark-tweet-nlp/.

References

  1. Li, W., Eickhoff, C., de Vries, A.P.: Geo-spatial domain expertise in microblogs. In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C.X., de Jong, F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 487–492. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06028-6_46

    Chapter  Google Scholar 

  2. Paraskevopoulos, P., Palpanas, T.: Where has this tweet come from? Fast and fine-grained geolocalization of non-geotagged tweets. Soc. Netw. Anal. Min. 6(1), 89 (2016)

    Article  Google Scholar 

  3. Melo, F., Martins, B.: Automated geocoding of textual documents: a survey of current approaches. Trans. GIS 21(1), 3–38 (2017)

    Article  Google Scholar 

  4. Zheng, X., Han, J., Sun, A.: A survey of location prediction on Twitter. CoRR abs/1705.03172 (2017)

    Google Scholar 

  5. Han, B., Cook, P., Baldwin, T.: Text-based Twitter user geolocation prediction. J. Artif. Int. Res. 49(1), 451–500 (2014)

    Google Scholar 

  6. Priedhorsky, R., Culotta, A., Del Valle, S.Y.: Inferring the origin locations of tweets with quantitative confidence. In: Proceedings of CSCW 2014 (2014)

    Google Scholar 

  7. Han, B., Rahimi, A., Derczynski, L., Baldwin, T.: Twitter geolocation prediction shared task of the 2016 workshop on noisy user-generated text. In: Proceedings of W-NUT (2016)

    Google Scholar 

  8. Cheng, Z., Caverlee, J., Lee, K.: A content-driven framework for geolocating microblog users. ACM Trans. Intell. Syst. Technol. 4(1), 2:1–2:27 (2013)

    Article  Google Scholar 

  9. Van Laere, O., Quinn, J., Schockaert, S., Dhoedt, B.: Spatially aware term selection for geotagging. IEEE Trans. Knowl. Data Eng. 26(1), 221–234 (2014)

    Article  Google Scholar 

  10. Dredze, M., Osborne, M., Kambadur, P.: Geolocation for Twitter: timing matters. In: Proceedings of HLT-NAACL (2016)

    Google Scholar 

  11. Hauff, C., Houben, G.J.: Placing images on the world map: a microblog-based enrichment approach. In: Proceedings of ACM SIGIR 2012, 691–700 (2012)

    Google Scholar 

  12. Backstrom, L., Sun, E., Marlow, C.: Find me if you can: improving geographical prediction with social and spatial proximity. In: Proceedings of WWW 2010, pp. 61–70 (2010)

    Google Scholar 

  13. Eisenstein, J., O’Connor, B., Smith, N.A., Xing, E.P.: A latent variable model for geographic lexical variation. In: Proceeding of EMNLP 2010, pp. 1277–1287 (2010)

    Google Scholar 

  14. Miura, Y., Taniguchi, M., Taniguchi, T., Ohkuma, T.: A simple scalable neural networks based model for geolocation prediction in Twitter. In: Proceedings of W-NUT (2016)

    Google Scholar 

  15. O’Hare, N., Murdock, V.: Modeling locations with social media. Inf. Retr. 16(1), 30–62 (2013)

    Article  Google Scholar 

  16. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Proceedings of ICML 1997 (1997)

    Google Scholar 

  17. Ripley, B.D.: Modelling spatial patterns. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(2), 172–212 (1977)

    MathSciNet  Google Scholar 

  18. Ruocco, M., Ramampiaro, H.: Geo-temporal distribution of tag terms for event-related image retrieval. Inf. Process. Manage. 51(1), 92–110 (2015)

    Article  Google Scholar 

  19. Lee, K., Caverlee, J., Webb, S.: Uncovering social spammers: social honeypots + machine learning. In: Proceedings of ACM SIGIR 2010, pp. 435–442 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozer Ozdikis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ozdikis, O., Ramampiaro, H., Nørvåg, K. (2018). Spatial Statistics of Term Co-occurrences for Location Prediction of Tweets. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds) Advances in Information Retrieval. ECIR 2018. Lecture Notes in Computer Science(), vol 10772. Springer, Cham. https://doi.org/10.1007/978-3-319-76941-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76941-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76940-0

  • Online ISBN: 978-3-319-76941-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics