Abstract
Predicting the locations of non-geotagged tweets is an active research area in geographical information retrieval. In this work, we propose a method to detect term co-occurrences in tweets that exhibit spatial clustering or dispersion tendency with significant deviation from the underlying single-term patterns, and use these co-occurrences to extend the feature space in probabilistic language models. We observe that using term pairs that spatially attract or repel each other yields significant increase in the accuracy of predicted locations. The method we propose relies purely on statistical approaches and spatial point patterns without using external data sources or gazetteers. Evaluations conducted on a large set of multilingual tweets indicate higher accuracy than the existing state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li, W., Eickhoff, C., de Vries, A.P.: Geo-spatial domain expertise in microblogs. In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C.X., de Jong, F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 487–492. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06028-6_46
Paraskevopoulos, P., Palpanas, T.: Where has this tweet come from? Fast and fine-grained geolocalization of non-geotagged tweets. Soc. Netw. Anal. Min. 6(1), 89 (2016)
Melo, F., Martins, B.: Automated geocoding of textual documents: a survey of current approaches. Trans. GIS 21(1), 3–38 (2017)
Zheng, X., Han, J., Sun, A.: A survey of location prediction on Twitter. CoRR abs/1705.03172 (2017)
Han, B., Cook, P., Baldwin, T.: Text-based Twitter user geolocation prediction. J. Artif. Int. Res. 49(1), 451–500 (2014)
Priedhorsky, R., Culotta, A., Del Valle, S.Y.: Inferring the origin locations of tweets with quantitative confidence. In: Proceedings of CSCW 2014 (2014)
Han, B., Rahimi, A., Derczynski, L., Baldwin, T.: Twitter geolocation prediction shared task of the 2016 workshop on noisy user-generated text. In: Proceedings of W-NUT (2016)
Cheng, Z., Caverlee, J., Lee, K.: A content-driven framework for geolocating microblog users. ACM Trans. Intell. Syst. Technol. 4(1), 2:1–2:27 (2013)
Van Laere, O., Quinn, J., Schockaert, S., Dhoedt, B.: Spatially aware term selection for geotagging. IEEE Trans. Knowl. Data Eng. 26(1), 221–234 (2014)
Dredze, M., Osborne, M., Kambadur, P.: Geolocation for Twitter: timing matters. In: Proceedings of HLT-NAACL (2016)
Hauff, C., Houben, G.J.: Placing images on the world map: a microblog-based enrichment approach. In: Proceedings of ACM SIGIR 2012, 691–700 (2012)
Backstrom, L., Sun, E., Marlow, C.: Find me if you can: improving geographical prediction with social and spatial proximity. In: Proceedings of WWW 2010, pp. 61–70 (2010)
Eisenstein, J., O’Connor, B., Smith, N.A., Xing, E.P.: A latent variable model for geographic lexical variation. In: Proceeding of EMNLP 2010, pp. 1277–1287 (2010)
Miura, Y., Taniguchi, M., Taniguchi, T., Ohkuma, T.: A simple scalable neural networks based model for geolocation prediction in Twitter. In: Proceedings of W-NUT (2016)
O’Hare, N., Murdock, V.: Modeling locations with social media. Inf. Retr. 16(1), 30–62 (2013)
Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In: Proceedings of ICML 1997 (1997)
Ripley, B.D.: Modelling spatial patterns. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(2), 172–212 (1977)
Ruocco, M., Ramampiaro, H.: Geo-temporal distribution of tag terms for event-related image retrieval. Inf. Process. Manage. 51(1), 92–110 (2015)
Lee, K., Caverlee, J., Webb, S.: Uncovering social spammers: social honeypots + machine learning. In: Proceedings of ACM SIGIR 2010, pp. 435–442 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Ozdikis, O., Ramampiaro, H., Nørvåg, K. (2018). Spatial Statistics of Term Co-occurrences for Location Prediction of Tweets. In: Pasi, G., Piwowarski, B., Azzopardi, L., Hanbury, A. (eds) Advances in Information Retrieval. ECIR 2018. Lecture Notes in Computer Science(), vol 10772. Springer, Cham. https://doi.org/10.1007/978-3-319-76941-7_37
Download citation
DOI: https://doi.org/10.1007/978-3-319-76941-7_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-76940-0
Online ISBN: 978-3-319-76941-7
eBook Packages: Computer ScienceComputer Science (R0)