Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multiple System Combination for PersoArabic-Latin Transliteration

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10762))

Abstract

In this paper, we model a PersoArabic to Latin transliteration system as grapheme-to-phoneme (G2P) and word lattice methods combined with statistical machine translation (SMT). Persian is an Indo-Iranian branch of the Indo-European family of languages belonging to Arabic script-based languages. Our transliteration model is induced from a parallel corpus containing the Perso-Arabic script of a Persian book together with its Romanized transcription in Dabire. We manually aligned the sentences of this book in both scripts and used it as a parallel corpus. Our results indicate that the performance of the system is improved by adding grapheme-to-phoneme and word lattice methods for out-of-vocabulary handling task into the monotonic statistical machine transliteration system. In addition, the final performance on the test corpus shows that our system achieves comparable results with other state-of-the-art systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This dataset is free available and can be obtain by contacting the corresponding authors.

References

  • Al-Onaizan, Y., Knight, K.: Translating named entities using monolingual and bilingual resources. In: 40th Annual Meeting of the Association for Computational Linguistics (2002)

    Google Scholar 

  • Asghari, H., Maleki, J., Faili, H.: A probabilistic approach to Persian Ezafe recognition. In: 14th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2014). Gothenburg, Sweden (2014)

    Google Scholar 

  • Azab, M., Bouamor, H., Mohit, B., Oflazer, K.: Dudley north visits north London: learning when to transliterate to Arabic. In: Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp 439–444. Association for Computational Linguistics, Atlanta, Georgia (2013)

    Google Scholar 

  • Balabantaray, R.C., Sahoo, D.: Odia transliteration engine using moses. In: Business and Information Management (ICBIM 2014) (2014)

    Google Scholar 

  • Bhalla, D., Joshi, N., Mathue, I.: Rule based transliteration scheme for english to punjabi. Int. J. Nat. Lang. Comput. (IJNLC) 2(2), 67–73 (2013)

    Article  Google Scholar 

  • Bisani, M., Ney, H.: Joint-sequence models for grapheme-to-phoneme conversion. Speech Commun. 5, 435–451 (2008)

    Google Scholar 

  • Brown, F.P., Della, S.A., Pietra, V.J., Pietra, D., Robert Mercer, L.: The mathematics of statistical machine translation: parameter estimation. Comput. Linguist. 19(2), 263–311 (1993)

    Google Scholar 

  • Durrani, N., Sajjad, H., Hoang, H., Koehn, P.: Integrating an unsupervised transliteration model into statistical machine translation. In: 14th Conference of the European Chapter of Association for Computational Linguistics (EACL 2014), Gothenburg, Sweden (2014)

    Google Scholar 

  • Dyer, C., Muresan, S., Resnik, P.: Generalizing word lattice translation. In: Annual Meeting of the Association for Computational Linguistics (ACL) (2008)

    Google Scholar 

  • Farghaly, A., Shaalan, K.: Arabic natural language processing: Challenges and solutions. ACM Trans. Asian Lang. Inf. Process. (TALIP) 8(4), 14 (2009)

    Google Scholar 

  • Habash, N.: REMOOV: a tool for online handling of out-of-vocabulary words in machine translation. In: Proceedings of the Second International Conference on Arabic Language Resources and Tools. The MEDAR Consortium, Cario, Egypt (2009)

    Google Scholar 

  • Heafield, K.: KenLM: faster and smaller language model queries. In: Proceedings of the Sixth Workshop on Statistical Machine Translation, pp 187–197. Edinburgh, Scotland, United Kingdom (2011)

    Google Scholar 

  • Karimi, S., Scholer, F., Turpin, A.: Collapsed consonant and vowel models: new approaches for English-Persian transliteration and back-transliteration. In: 45th Annual Meeting of the Association of Computational Linguistics, Prague, Czech Republic (2007)

    Google Scholar 

  • Karimi, S.: Machine transliteration of proper names between English and Persian. Ph.D. dissertation, RMIT University, Melbourne (2008)

    Google Scholar 

  • Kashani, M.M., Joanis, E., Kuhn, R., Foster, G., Popwich, F.: Integration of an Arabic transliteration module into a statistical machine translation system. In: Proceedings of the Second Workshop on Statistical Machine Translation, Prague, Czech Republic (2007)

    Google Scholar 

  • Kaur, V., Kaur Sarao, A., Singh, J.: Hybrid approach for Hindi to English transliteration system for proper nouns. Int. J. Comput. Sci. Inf. Technol. 5(5), 6361–6366 (2014)

    Google Scholar 

  • Kirschenbaum, A., Wintner, S.: Lightly supervised transliteration for machine translation. In: 12th Conference of the European Chapter of the Association for Computational Linguistics(EACL), Athens, pp 433–441 (2009)

    Google Scholar 

  • Koehn, P., Hoang, H.: Factored translation models. In: EMNLP (2007)

    Google Scholar 

  • Koehn, P., et al.: Moses: open source toolkit for statistical machine translation. In: Human Language Technology Conference of the NAACL, Main Conference. Association for Computational Linguistics, New York, USA (2007)

    Google Scholar 

  • Maleki, J.: A romanized transcription for persian. In: Natural Language Processing Track (INFOS2008). Cario (2008)

    Google Scholar 

  • Maleki, J., Ahrenberg, L.: Converting romanized persian to the arabic writing systems. In: Language Resources and Evaluation Conference (2008)

    Google Scholar 

  • Masmoudi, A., Habash, N., Ellouze, M., Estève, Y., Belguith, L.H.: Arabic transliteration of romanized tunisian dialect text: a preliminary investigation. In: Gelbukh, A. (ed.) CICLing 2015. LNCS, vol. 9041, pp. 608–619. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18111-0_46

    Chapter  Google Scholar 

  • Mathur, S., Parakash Saxena, V.: Hybrid appraoch to English-Hindi name entity transliteration. In: Electrical, Electronics and Computer Science (SCEECS) IEEE Students’ Conference (2014)

    Google Scholar 

  • Mousavi Nejad, N., Khadivi, S., Taghipour, K.: The Amirkabir machine transliteration system for NEWS 2011. In: Named Entities Workshop (2011)

    Google Scholar 

  • Neysari, S.: A Study on Persian Orthography (in Persian). Sazmane Cap o Entesarat, Tehran (1996)

    Google Scholar 

  • Och, F.J., Ney, H.: A systematic comparison of various statistical alignment models. Comput. Linguist. 29(1), 19–51 (2003)

    Article  Google Scholar 

  • Papineni, K., Roukos, S., Ward, T., Zhu, W.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, ACL. Morristown, NJ, USA, pp 311–318 (2002)

    Google Scholar 

  • Sellami, R., Deffaf, F., Sadat, F., Belguith, L.H.: Improved statistical machine translation by cross-linguistic projection of named entities recognition and translation. Computación y Sistemas 19(4), 701–711 (2015)

    Article  Google Scholar 

  • Sequitur G2P, https://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html (2008). Accessed 1 Apr 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Hemmati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hemmati, N., Faili, H., Maleki, J. (2018). Multiple System Combination for PersoArabic-Latin Transliteration. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2017. Lecture Notes in Computer Science(), vol 10762. Springer, Cham. https://doi.org/10.1007/978-3-319-77116-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77116-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77115-1

  • Online ISBN: 978-3-319-77116-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics