Abstract
We introduce and study a class of optimization problems we coin replenishment problems with fixed turnover times: a very natural model that has received little attention in the literature. Nodes with capacity for storing a certain commodity are located at various places; at each node the commodity depletes within a certain time, the turnover time, which is constant but can vary between locations. Nodes should never run empty, and to prevent this we may schedule nodes for replenishment every day. The natural feature that makes this problem interesting is that we may schedule a replenishment (well) before a node becomes empty, but then the next replenishment will be due earlier also. This added workload needs to be balanced against the cost of routing vehicles to do the replenishments. In this paper, we focus on the aspect of minimizing routing costs. However, the framework of recurring tasks, in which the next job of a task must be done within a fixed amount of time after the previous one is much more general and gives an adequate model for many practical situations.
Note that our problem has an infinite time horizon. However, it can be fully characterized by a compact input, containing only the location of each store and a turnover time. This makes determining its computational complexity highly challenging and indeed it remains essentially unresolved. We study the problem for two objectives: min-avg minimizes the average tour length and min-max minimizes the maximum tour length over all days. For min-max we derive a logarithmic factor approximation for the problem on general metrics and a 6-approximation for the problem on trees, for which we have a proof of NP-hardness. For min-avg we present a logarithmic approximation on general metrics, 2-approximation for trees, and a pseudopolynomial time algorithm for the line. Many intriguing problems remain open.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baruah, S., Goossens, J.: Scheduling real-time tasks: algorithms and complexity. In: Handbook of Scheduling: Algorithms, Models, and Performance Analysis. CRC Press, Boca Raton (2003)
Baruah, S., Rosier, L., Tulchinsky, I., Varvel, D.: The complexity of periodic maintenance. In: Proceedings of the International Computer Symposium, pp. 315–320 (1990)
Bonifaci, V., Marchetti-Spaccamela, A.: Feasibility analysis of sporadic real-time multiprocessor task systems. Algorithmica 63(4), 763–780 (2012)
Bosman, T., van Ee, M., Jiao, Y., Marchetti-Spaccamela, A., Ravi, R., Stougie, L.: Approximation algorithms for replenishment problems with fixed turnover times. arXiv preprint arXiv:1712.05218 (2017)
Calabro, C., Impagliazzo, R., Kabenets, V., Paturi, R.: The complexity of unique \(k\)-SAT: an isolation lemma for \(k\)-CNFs. J. Comput. Syst. Sci. 74(3), 386–393 (2008)
Chan, M.Y., Chin, F.Y.L.: General schedulers for the pinwheel problem based on double-integer reduction. IEEE Trans. Comput. 41(6), 755–768 (1992)
Chan, M.Y., Chin, F.Y.L.: Schedulers for larger classes of pinwheel instances. Algorithmica 9(5), 425–462 (1993)
Coelho, L.C., Cordeau, J.-F., Laporte, G.: Thirty years of inventory routing. Transp. Sci. 48(1), 1–19 (2013)
Coene, S., Spieksma, F.C.R., Woeginger, G.J.: Charlemagne’s challenge: the periodic latency problem. Oper. Res. 59(3), 674–683 (2011)
Dell, H., Husfeldt, T., Marx, D., Taslaman, N., Wahlén, M.: Exponential time complexity of the permanent and the tutte polynomial. ACM Trans. Algorithms 10(4), 21:1–21:32 (2014)
Eisenbrand, F., Hähnle, N., Niemeier, M., Skutella, M., Verschae, J., Wiese, A.: Scheduling periodic tasks in a hard real-time environment. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 299–311. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14165-2_26
Ekberg, P., Yi, W.: Schedulability analysis of a graph-based task model for mixed-criticality systems. Real-Time Syst. 52(1), 1–37 (2016)
Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. Syst. Sci. 69(3), 485–497 (2004)
Fishburn, P.C., Lagarias, J.C.: Pinwheel scheduling: achievable densities. Algorithmica 34(1), 14–38 (2002)
Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. In: Proceedings of the 17th International Symposium on Foundations of Computer Science, pp. 216–227 (1976)
Gąsieniec, L., Klasing, R., Levcopoulos, C., Lingas, A., Min, J., Radzik, T.: Bamboo garden trimming problem (perpetual maintenance of machines with different attendance urgency factors). In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 229–240. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0_18
Holte, R., Mok, A., Rosier, L., Tulchinsky, I., Varvel, D.: The pinwheel: a real-time scheduling problem. In: Proceedings of the 22th Annual Hawaii International Conference on System Sciences, vol. 2, pp. 693–702 (1989)
Jacobs, T., Longo, S.: A new perspective on the windows scheduling problem. arXiv preprint arXiv:1410.7237 (2014)
Mok, A., Rosier, L., Tulchinksy, I., Varvel, D.: Algorithms and complexity of the periodic maintenance problem. Microprocess. Microprogr. 27(1–5), 657–664 (1989)
Acknowledgments
The research of YJ and RR is supported in part by the U. S. National Science Foundation under award numbers CCF-1527032 and CCF-1655442. The research of MvE was done while he was employed by Vrije Universiteit Amsterdam.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Bosman, T., van Ee, M., Jiao, Y., Marchetti-Spaccamela, A., Ravi, R., Stougie, L. (2018). Approximation Algorithms for Replenishment Problems with Fixed Turnover Times. In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-77404-6_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77403-9
Online ISBN: 978-3-319-77404-6
eBook Packages: Computer ScienceComputer Science (R0)