Abstract
Monte-Carlo Tree Search (MCTS) has shown particular success in General Game Playing (GGP) and General Video Game Playing (GVGP) and many enhancements and variants have been developed. Recently, an on-line adaptive parameter tuning mechanism for MCTS agents has been proposed that almost achieves the same performance as off-line tuning in GGP.
In this paper we apply the same approach to GVGP and use the popular General Video Game AI (GVGAI) framework, in which the time allowed to make a decision is only 40 ms. We design three Self-Adaptive MCTS (SA-MCTS) agents that optimize on-line the parameters of a standard non-Self-Adaptive MCTS agent of GVGAI. The three agents select the parameter values using Naïve Monte-Carlo, an Evolutionary Algorithm and an N-Tuple Bandit Evolutionary Algorithm respectively, and are tested on 20 single-player games of GVGAI.
The SA-MCTS agents achieve more robust results on the tested games. With the same time setting, they perform similarly to the baseline standard MCTS agent in the games for which the baseline agent performs well, and significantly improve the win rate in the games for which the baseline agent performs poorly. As validation, we also test the performance of non-Self-Adaptive MCTS instances that use the most sampled parameter settings during the on-line tuning of each of the three SA-MCTS agents for each game. Results show that these parameter settings improve the win rate on the games Wait for Breakfast and Escape by 4 times and 150 times, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo Tree Search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75538-8_7
Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_29
Yannakakis, G.N., Togelius, J.: Artificial Intelligence and Games. Springer (2018), http://gameaibook.org
Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)
Helmbold, D.P., Parker-Wood, A.: All-moves-as-first heuristics in Monte-Carlo Go. In: IC-AI, pp. 605–610 (2009)
Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: Proceedings of the 24th International Conference on Machine Learning, pp. 273–280. ACM (2007)
Cazenave, T.: Generalized rapid action value estimation. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence, pp. 754–760. AAAI Press (2015)
Sironi, C.F., Winands, M.H.M.: Comparison of rapid action value estimation variants for general game playing. In: 2016 IEEE Conference on Computational Intelligence and Games (CIG), pp. 309–316. IEEE (2016)
Finnsson, H., Björnsson, Y.: Simulation-based approach to general game playing. In: AAAI, vol. 8, pp. 259–264 (2008)
Powley, E.J., Cowling, P.I., Whitehouse, D.: Information capture and reuse strategies in Monte Carlo tree search, with applications to games of hidden information. Artif. Intell. 217, 92–116 (2014)
Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al.: Mastering the game of Go without human knowledge. Nature 550(7676), 354–359 (2017)
Björnsson, Y., Finnsson, H.: CadiaPlayer: a simulation-based general game player. IEEE Trans. Comput. Intell. AI Games, 1(1), 4–15 (2009)
Perez-Liebana, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas, S.M., Couëtoux, A., Lee, J., Lim, C.U., Thompson, T.: The 2014 general video game playing competition. IEEE Trans. Comput. Intell. AI Games 8(3), 229–243 (2016)
Gaina, R.D., Couetoux, A., Soemers, D.J.N.J., Winands, M.H.M., Vodopivec, T., Kirchgeßner, F., Liu, J., Lucas, S.M., Perez-Liebana, D.: The 2016 two-player GVGAI competition. IEEE Trans. Comput. Intell. AI Games (2017, accepted for publication)
Soemers, D.J.N.J., Sironi, C.F., Schuster, T., Winands, M.H.M.: Enhancements for real-time Monte-Carlo tree search in general video game playing. In: 2016 IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8. IEEE (2016)
Gaina, R.D., Liu, J., Lucas, S.M., Pérez-Liébana, D.: Analysis of vanilla rolling horizon evolution parameters in general video game playing. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 418–434. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_28
Bravi, I., Khalifa, A., Holmgård, C., Togelius, J.: Evolving game-specific UCB alternatives for general video game playing. In: Squillero, G., Sim, K. (eds.) EvoApplications 2017. LNCS, vol. 10199, pp. 393–406. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55849-3_26
Sironi, C.F., Winands, M.H.M.: On-line parameters tuning for Monte-Carlo tree search in general game playing. In: 6th Workshop on Computer Games (CGW) (2017)
Liu, J., Perez-Liebana, D., Lucas, S.M.: The single-player GVGAI learning framework - technical manual (2017)
Khalifa, A., Perez-Liebana, D., Lucas, S.M., Togelius, J.: General video game level generation. In: Proceedings of the 2016 on Genetic and Evolutionary Computation Conference, pp. 253–259. ACM (2016)
Khalifa, A., Green, M.C., Perez-Liebana, D., Togelius, J.: General video game rule generation. In: 2017 IEEE Conference on Computational Intelligence and Games (CIG), pp. 170–177. IEEE (2017)
Ebner, M., Levine, J., Lucas, S.M., Schaul, T., Thompson, T., Togelius, J.: Towards a video game description language. In: Dagstuhl Follow-Ups, vol. 6. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2013)
Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning environment: an evaluation platform for general agents. J. Artif. Intell. Res. (JAIR) 47, 253–279 (2013)
Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)
Ontanón, S.: Combinatorial multi-armed bandits for real-time strategy games. J. Artif. Intell. Res. 58, 665–702 (2017)
Kunanusont, K., Gaina, R.D., Liu, J., Perez-Liebana, D., Lucas, S.M.: The n-tuple bandit evolutionary algorithm for automatic game improvement. In: 2017 IEEE Congress on Evolutionary Computation (CEC). IEEE (2017)
Perez-Liebana, D., Liu, J., Lucas, S.M.: General video game AI as a tool for game design. In: Tutorial at IEEE Conference on Computational Intelligence and Games (CIG) (2017)
Nelson, M.J.: Investigating vanilla MCTS scaling on the GVG-AI game corpus. In: Proceedings of the 2016 IEEE Conference on Computational Intelligence and Games, pp. 403–409 (2016)
Bontrager, P., Khalifa, A., Mendes, A., Togelius, J.: Matching games and algorithms for general video game playing. In: Twelfth Artificial Intelligence and Interactive Digital Entertainment Conference, pp. 122–128 (2016)
Acknowledgments
This work is partially funded by the Netherlands Organisation for Scientific Research (NWO) in the framework of the project GoGeneral, grant number 612.001.121, and the EPSRC IGGI Centre for Doctoral Training, grant number EP/L015846/1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Sironi, C.F. et al. (2018). Self-adaptive MCTS for General Video Game Playing. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-77538-8_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77537-1
Online ISBN: 978-3-319-77538-8
eBook Packages: Computer ScienceComputer Science (R0)