Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automatic Legal Document Analysis: Improving the Results of Information Extraction Processes Using an Ontology

  • Chapter
  • First Online:
Intelligent Methods and Big Data in Industrial Applications

Part of the book series: Studies in Big Data ((SBD,volume 40))

Abstract

Information Extraction (IE) is a pervasive task in the industry that allows to obtain automatically structured data from documents in natural language. Current software systems focused on this activity are able to extract a large percentage of the required information, but they do not usually focus on the quality of the extracted data. In this paper we present an approach focused on validating and improving the quality of the results of an IE system. Our proposal is based on the use of ontologies which store domain knowledge, and which we leverage to detect and solve consistency errors in the extracted data. We have implemented our approach to run against the output of the AIS system, an IE system specialized in analyzing legal documents and we have tested it using a real dataset. Preliminary results confirm the interest of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.isyc.com/es/soluciones/oncustomer.html.

  2. 2.

    https://www.isyc.com.

  3. 3.

    https://www.tessi.fr.

  4. 4.

    http://dblab.cs.toronto.edu/project/xcurator/.

  5. 5.

    https://twitter.com/.

  6. 6.

    A Named Entity is a unique identifier of an entity in a text, e.g.,’Marie Curie’ is a NE of a person.

  7. 7.

    R2RML: RDB to RDF Mapping Language, https://www.w3.org/TR/r2rml/.

  8. 8.

    This example is directly taken from the experiments dataset. Proper names and specific data have been altered for reasons of privacy.

  9. 9.

    https://developers.google.com/maps/documentation/geocoding/start.

  10. 10.

    http://openrefine.org/.

  11. 11.

    https://github.com/OpenRefine/OpenRefine/wiki/General-Refine-Expression-Language.

  12. 12.

    In Spain, people have a first name, an optional middle name, and two mandatory last names, the first one if the father family name and the second one is the mother family name, although legally this order can be interchanged.

References

  1. Rahm, E., Do, H.H.: Data cleaning: problems and current approaches. IEEE Data Eng. Bull. 23(4), 3–13 (2000)

    Google Scholar 

  2. Curry, E., Freitas, A., ORiáin, S.: The role of community-driven data curation for enterprises. In: Linking Enterprise Data, pp. 25–47 (2010)

    Chapter  Google Scholar 

  3. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing. Int. J. Human Comput. Stud. 43(5–6), 907–928 (1995)

    Article  Google Scholar 

  4. Buey, M.G., Garrido, A.L., Bobed, C., Ilarri, S.: The AIS project: boosting information extraction from legal documents by using ontologies. In: Proceedings of the 8th International Conference on Agents and Artificial Intelligence (ICAART 2016), pp. 438–445 (2016)

    Google Scholar 

  5. Wimalasuriya, D.C., Dou, D.: Ontology-based information extraction: an introduction and a survey of current approaches. J. Inf. Sci. 36(3), 306–323 (2010)

    Article  Google Scholar 

  6. Borobia, J.R., Bobed, C., Garrido, A.L., Mena, E.: SIWAM: using social data to semantically assess the difficulties in mountain activities. In: Proceedings of 10th International Conference on Web Information Systems and Technologies (WEBIST’14), pp. 41–48 (2014)

    Google Scholar 

  7. Garrido, A.L., Buey, M.G., Muñoz, G., Casado-Rubio, J.L.: Information extraction on weather forecasts with semantic technologies. In: International Conference on Applications of Natural Language to Information Systems (NLDB 2016), pp. 140–151. Springer International Publishing, Berlin (2016)

    Chapter  Google Scholar 

  8. Maletic, J.I., Marcus, A.: Data cleansing. In: Data Mining and Knowledge Discovery Handbook, pp. 21–36. Springer, Boston, MA (2005)

    Google Scholar 

  9. Sarpong, K.A.M., Arthur, J.K.: Analysis of data cleansing approaches regarding dirty data-a comparative study. Int. J. Comput. Appl. 76(7) (2013)

    Google Scholar 

  10. Yeganeh, S., Hassanzadeh, O., Miller, R. J.: Linking semistructured data on the web. In: Interface (2011)

    Google Scholar 

  11. Guo, W., Li, H., Ji, H., Diab, M.T.: Linking tweets to news: a framework to enrich short text data in social media. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (ACL 2013), pp. 239–249 (2013)

    Google Scholar 

  12. Wang, J., Bansal, M., Gimpel, K., Ziebart, B.D., Clement, T.Y.: A sense-topic model for word sense induction with unsupervised data enrichment. Trans. Assoc. Comput. Linguist. 3, 59–71 (2015)

    Google Scholar 

  13. Sekine, S., Ranchhod, E.: Named Entities: Recognition, Classification and Use. John Benjamins Publishing Company (2009)

    Google Scholar 

  14. Hu, Y., McKenzie, G., Yang, J.A., Gao, S., Abdalla, A., Janowicz, K.: A linked-data-driven web portal for learning analytics: data enrichment, interactive visualization, and knowledge discovery. In: LAK Workshops (2014)

    Google Scholar 

  15. Yosef, M.A.: U-AIDA: a customizable system for named entity recognition, classification, and disambiguation. Ph.D thesis, Saarland University (2016)

    Google Scholar 

  16. Suárez-Figueroa, M. C., Gómez-Pérez, A., Motta, E., Gangemi, A. Ontology engineering in a networked world. Springer Science and Business Media (2012)

    Google Scholar 

  17. Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in owl-lite. In: Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004), pp. 323–327. IOS Press, Amsterdam (2004)

    Google Scholar 

  18. Bollegala, D., Matsuo, Y., Ishizuka, M.: Measuring semantic similarity between words using web search engines. In: Proceedings of the 16th International World Wide Web Conference (WWW’07), pp. 757–766 (2007)

    Google Scholar 

  19. Jiang, Y., Wang, X., Zheng, H.T.: A semantic similarity measure based on information distance for ontology alignment. Inf. Sci. 278, 76–87 (2014)

    Article  Google Scholar 

  20. Yujian, L., Bo, L.: A normalized levenshtein distance metric. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1091–1095 (2007)

    Article  Google Scholar 

  21. van Rijsbergen, C.J.: Information Retrieval, 2nd. edn. Butterworth-Heinemann (1979). ISBN 0408709294

    Google Scholar 

Download references

Acknowledgements

This research work has been supported by projects TIN2013-46238-C4-4-R, TIN2016-78011-C4-3-R (AEI/FEDER, UE), and DGA/FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María G. Buey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buey, M.G., Roman, C., Garrido, A.L., Bobed, C., Mena, E. (2019). Automatic Legal Document Analysis: Improving the Results of Information Extraction Processes Using an Ontology. In: Bembenik, R., Skonieczny, Ł., Protaziuk, G., Kryszkiewicz, M., Rybinski, H. (eds) Intelligent Methods and Big Data in Industrial Applications. Studies in Big Data, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-319-77604-0_24

Download citation

Publish with us

Policies and ethics