Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Offline Learning for Selection Hyper-heuristics with Elman Networks

  • Conference paper
  • First Online:
Artificial Evolution (EA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10764))

Abstract

Offline selection hyper-heuristics are machine learning methods that are trained on heuristic selections to create an algorithm that is tuned for a particular problem domain. In this work, a simple selection hyper-heuristic is executed on a number of computationally hard benchmark optimisation problems, and the resulting sequences of low level heuristic selections and objective function values are used to construct an offline learning database. An Elman network is trained on sequences of heuristic selections chosen from the offline database and the network’s ability to learn and generalise from these sequences is evaluated. The networks are trained using a leave-one-out cross validation methodology and the sequences of heuristic selections they produce are tested on benchmark problems drawn from the HyFlex set. The results demonstrate that the Elman network is capable of intra-domain learning and generalisation with 99% confidence and produces better results than the training sequences in many cases. When the network was trained using an inter-domain training set, the Elman network did not exhibit generalisation indicating that inter-domain generalisation is a harder problem and that strategies learned on one domain cannot necessarily be transferred to another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    HyFlex, Cross-domain Heuristic Search Challenge (CHeSC 2011) is used in this study (see http://www.asap.cs.nott.ac.uk/chesc2011/).

References

  1. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ă–zcan, E., Woodward, J.: A classification of hyper-heuristic approaches. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_15

    Google Scholar 

  2. Ross, P., Schulenburg, S., Marín-Bläzquez, J.G., Hart, E.: Hyper-heuristics: learning to combine simple heuristics in bin-packing problems. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, GECCO 2002, pp. 942–948. Morgan Kaufmann Publishers Inc., San Francisco (2002)

    Google Scholar 

  3. Burke, E.K., Petrovic, S., Qu, R.: Case-based heuristic selection for timetabling problems. J. Sched. 9(2), 115–132 (2006)

    Article  MATH  Google Scholar 

  4. Terashima-Marín, H., Ortiz-Bayliss, J.C., Ross, P., Valenzuela-Rendón, M.: Hyper-heuristics for the dynamic variable ordering in constraint satisfaction problems. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO 2008, pp. 571–578. ACM, New York (2008)

    Google Scholar 

  5. Kheiri, A., Keedwell, E.: A sequence-based selection hyper-heuristic utilising a hidden Markov model. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO 2015, pp. 417–424. ACM (2015)

    Google Scholar 

  6. Yates, W.B., Keedwell, E.C.: Clustering of hyper-heuristic selections using the Smith-Waterman algorithm for offline learning. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), Berlin, pp. 119–120. ACM (2017)

    Google Scholar 

  7. Ochoa, G., et al.: HyFlex: a benchmark framework for cross-domain heuristic search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29124-1_12

    Chapter  Google Scholar 

  8. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)

    Article  Google Scholar 

  9. Walker, J.D., Ochoa, G., Gendreau, M., Burke, E.K.: Vehicle routing and adaptive iterated local search within the HyFlex hyper-heuristic framework. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 265–276. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_19

    Chapter  Google Scholar 

  10. Drake, J.H., Özcan, E., Burke, E.K.: An improved choice function heuristic selection for cross domain heuristic search. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7492, pp. 307–316. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32964-7_31

    Chapter  Google Scholar 

  11. Mısır, M., Verbeeck, K., Causmaecker, P.D., Berghe, G.V.: A new hyper-heuristic as a general problem solver: an implementation in HyFlex. J. Sched. 16(3), 291–311 (2013)

    Article  MathSciNet  Google Scholar 

  12. Drake, J.H., Özcan, E., Burke, E.K.: A comparison of crossover control mechanisms within single-point selection hyper-heuristics using HyFlex. In: IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, pp. 3397–3403, May 2015

    Google Scholar 

  13. Dempster, P., Drake, J.H.: Two frameworks for cross-domain heuristic and parameter selection using harmony search. In: Kim, J.H., Geem, Z.W. (eds.) Harmony Search Algorithm. AISC, vol. 382, pp. 83–94. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-47926-1_10

    Chapter  Google Scholar 

  14. Elman, J.L.: Distributed representations, simple recurrent networks, and grammatical structure. Mach. Learn. 7, 195–224 (1991)

    Google Scholar 

  15. Bai, R., Burke, E.K., Gendreau, M., Kendall, G., McCollum, B.: Memory length in hyper-heuristics: an empirical study. In: Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Scheduling, pp. 173–178 (2007)

    Google Scholar 

  16. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William B. Yates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yates, W.B., Keedwell, E.C. (2018). Offline Learning for Selection Hyper-heuristics with Elman Networks. In: Lutton, E., Legrand, P., Parrend, P., Monmarché, N., Schoenauer, M. (eds) Artificial Evolution. EA 2017. Lecture Notes in Computer Science(), vol 10764. Springer, Cham. https://doi.org/10.1007/978-3-319-78133-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78133-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78132-7

  • Online ISBN: 978-3-319-78133-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics