Abstract
Offline selection hyper-heuristics are machine learning methods that are trained on heuristic selections to create an algorithm that is tuned for a particular problem domain. In this work, a simple selection hyper-heuristic is executed on a number of computationally hard benchmark optimisation problems, and the resulting sequences of low level heuristic selections and objective function values are used to construct an offline learning database. An Elman network is trained on sequences of heuristic selections chosen from the offline database and the network’s ability to learn and generalise from these sequences is evaluated. The networks are trained using a leave-one-out cross validation methodology and the sequences of heuristic selections they produce are tested on benchmark problems drawn from the HyFlex set. The results demonstrate that the Elman network is capable of intra-domain learning and generalisation with 99% confidence and produces better results than the training sequences in many cases. When the network was trained using an inter-domain training set, the Elman network did not exhibit generalisation indicating that inter-domain generalisation is a harder problem and that strategies learned on one domain cannot necessarily be transferred to another.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
HyFlex, Cross-domain Heuristic Search Challenge (CHeSC 2011) is used in this study (see http://www.asap.cs.nott.ac.uk/chesc2011/).
References
Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ă–zcan, E., Woodward, J.: A classification of hyper-heuristic approaches. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_15
Ross, P., Schulenburg, S., MarĂn-Bläzquez, J.G., Hart, E.: Hyper-heuristics: learning to combine simple heuristics in bin-packing problems. In: Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation, GECCO 2002, pp. 942–948. Morgan Kaufmann Publishers Inc., San Francisco (2002)
Burke, E.K., Petrovic, S., Qu, R.: Case-based heuristic selection for timetabling problems. J. Sched. 9(2), 115–132 (2006)
Terashima-MarĂn, H., Ortiz-Bayliss, J.C., Ross, P., Valenzuela-RendĂłn, M.: Hyper-heuristics for the dynamic variable ordering in constraint satisfaction problems. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO 2008, pp. 571–578. ACM, New York (2008)
Kheiri, A., Keedwell, E.: A sequence-based selection hyper-heuristic utilising a hidden Markov model. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO 2015, pp. 417–424. ACM (2015)
Yates, W.B., Keedwell, E.C.: Clustering of hyper-heuristic selections using the Smith-Waterman algorithm for offline learning. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), Berlin, pp. 119–120. ACM (2017)
Ochoa, G., et al.: HyFlex: a benchmark framework for cross-domain heuristic search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29124-1_12
Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)
Walker, J.D., Ochoa, G., Gendreau, M., Burke, E.K.: Vehicle routing and adaptive iterated local search within the HyFlex hyper-heuristic framework. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 265–276. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34413-8_19
Drake, J.H., Özcan, E., Burke, E.K.: An improved choice function heuristic selection for cross domain heuristic search. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7492, pp. 307–316. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32964-7_31
Mısır, M., Verbeeck, K., Causmaecker, P.D., Berghe, G.V.: A new hyper-heuristic as a general problem solver: an implementation in HyFlex. J. Sched. 16(3), 291–311 (2013)
Drake, J.H., Özcan, E., Burke, E.K.: A comparison of crossover control mechanisms within single-point selection hyper-heuristics using HyFlex. In: IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, pp. 3397–3403, May 2015
Dempster, P., Drake, J.H.: Two frameworks for cross-domain heuristic and parameter selection using harmony search. In: Kim, J.H., Geem, Z.W. (eds.) Harmony Search Algorithm. AISC, vol. 382, pp. 83–94. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-47926-1_10
Elman, J.L.: Distributed representations, simple recurrent networks, and grammatical structure. Mach. Learn. 7, 195–224 (1991)
Bai, R., Burke, E.K., Gendreau, M., Kendall, G., McCollum, B.: Memory length in hyper-heuristics: an empirical study. In: Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Scheduling, pp. 173–178 (2007)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Yates, W.B., Keedwell, E.C. (2018). Offline Learning for Selection Hyper-heuristics with Elman Networks. In: Lutton, E., Legrand, P., Parrend, P., Monmarché, N., Schoenauer, M. (eds) Artificial Evolution. EA 2017. Lecture Notes in Computer Science(), vol 10764. Springer, Cham. https://doi.org/10.1007/978-3-319-78133-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-78133-4_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78132-7
Online ISBN: 978-3-319-78133-4
eBook Packages: Computer ScienceComputer Science (R0)