Abstract
This paper describes a new approach for the multiple alignment of biological sequences (DNA or proteins) using a Parisian Evolution approach called MEMSA, for Multidimensional Evolutionary Multiple Sequence Alignment, coded using the EASEA platform. This approach evolves individual sub-alignments called “patches” that are used to create a new kind of Multiple Sequence Alignment where alternative solutions are computed simultaneously using different fitness functions. Solutions are generated by combining coherent sets of high-scoring individuals that are used to reconstruct multi-dimensional multiple sequence alignments. The alignments of this prototype version show a quality comparable to ClustalW (one of the most widely used existing methods) on the 218 samples of the BAliBASE benchmark in reasonable time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blackburne, B.P., Whelan, S.: Measuring the distance between multiple sequence alignments. Bioinformatics 28(4), 495–502 (2012)
Collet, P., Lutton, E., Raynal, F., Schoenauer, M.: Polar IFS+Parisian genetic programming=efficient IFS inverse problem solving. Genetic Program. Evolvable Mach. 1(4), 339–361 (2000). http://dx.doi.org/10.1023/A:1010065123132
Collet, P., Lutton, E., Schoenauer, M., Louchet, J.: Take it EASEA. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 891–901. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_87
Do, C.B., Mahabhashyam, M.S., Brudno, M., Batzoglou, S.: Probcons: probabilistic consistency-based multiple sequence alignment. Genome Res. 15(2), 330–340 (2005)
Edgar, R.C.: Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5), 1792–1797 (2004)
Zhu, H., He, Z., Jia, Y.: A novel approach to multiple sequence alignment using multiobjective evolutionary algorithm based on decomposition. IEEE J. Biomed. Health Inform. 20, 717–727 (2016)
Hayes-Roth, F.: Review of “adaptation in natural and artificial systems by John H. Holland”. The University of Michigan Press (1975). SIGART Bull. 53, 15 (1975). http://doi.acm.org/10.1145/1216504.1216510
Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Nat. Acad. Sci. 89(22), 10915–10919 (1992). http://www.pnas.org/content/89/22/10915.abstract
Holland, J.H.: Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems. In: Computation & Intelligence, pp. 275–304. American Association for Artificial Intelligence, Menlo Park (1995). http://dl.acm.org/citation.cfm?id=216000.216016
Katoh, K., Standley, D.M.: MAFFT: iterative refinement and additional methods. In: Multiple Sequence Alignment Methods, pp. 131–146. Humana Press, Totowa (2014)
Kaya, M., Sarhan, A., Alhajj, R.: Multiple sequence alignment with affine gap by using multi-objective genetic algorithm. Comput. Methods Prog. Biomed. 114, 38–49 (2014)
Cai, L., Juedes, D., Liaknovitch, E.: Evolutionary computation techniques for multiple sequence alignment. In: Proceedings of the IEEE Congress on Evolutionary Computation (2000)
Larkin, M., Blackshields, G., Brown, N., Chenna, R., McGettigan, P., McWilliam, H., Valentin, F., Wallace, I., Wilm, A., Lopez, R., Thompson, J., Gibson, T., Higgins, D.: Clustal w and clustal x version 2.0. Bioinformatics 23, 2947–2948 (2007)
Lassmann, T., Sonnhammer, E.L.: Kalign - an accurate and fast multiple sequence alignment algorithm. BMC Bioinf. 6(1), 298 (2005)
Maitre, O., Krüger, F., Querry, S., Lachiche, N., Collet, P.: EASEA: specification and execution of evolutionary algorithms on GPGPU. Soft Comput. 16(2), 261–279 (2011)
Nguyen, H.D., Yoshihara, I., Yamamori, K., Yasunaga, M.: Aligning multiple protein sequences by parallel hybrid genetic algorithm. Genome Inform. 13, 123–132 (2002)
Notredame, C., Higgins, D.G.: Saga: sequence alignment by genetic algorithm. Nucleic Acids Res. 24(8), 1515–1524 (1996)
Thompson, J.D., Koehl, P., Ripp, R., Poch, O.: BAliBASE 3.0: latest developments of the multiple sequence alignment benchmark. Proteins 61(1), 127–136 (2005). Structure, Function and BioInformatics
Thompson, J.D., Linard, B., Lecompte, O., Poch, O.: A comprehensive benchmark study of multiple sequence alignment methods: current challenges and future perspectives. PLoS One 6(3), e18093 (2011)
Thompson, J.D., Plewniak, F., Ripp, R., Thierry, J.C., Poch, O.: Towards a reliable objective function for multiple sequence alignments. J. Mol. Biol. 314(4), 937–951 (2001). http://www.sciencedirect.com/science/article/pii/S0022283601951873
Wilson, S.W., Goldberg, D.E.: A critical review of classifier systems. In: Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 244–255. Morgan Kaufmann Publishers Inc., San Francisco (1989). http://dl.acm.org/citation.cfm?id=645512.657260
Zhang, C., Wong, A.: A genetic algorithm for multiple molecular sequence alignment. Comput. Appl. Biosci. 13, 565–581 (1997)
Acknowledgement
We would like to thank the members of the BISTRO Bioinformatics Platform in Strasbourg for their support. This work was supported by the Agence Nationale de la Recherche (BIPBIP: ANR-10-BINF-03-02), the Région Alsace and Institute funds from the CNRS, the Université de Strasbourg and the Faculté de Médecine de Strasbourg.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Thompson, J.D., Vanhoutrève, R., Collet, P. (2018). MEMSA: A Robust Parisian EA for Multidimensional Multiple Sequence Alignment. In: Lutton, E., Legrand, P., Parrend, P., Monmarché, N., Schoenauer, M. (eds) Artificial Evolution. EA 2017. Lecture Notes in Computer Science(), vol 10764. Springer, Cham. https://doi.org/10.1007/978-3-319-78133-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-78133-4_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78132-7
Online ISBN: 978-3-319-78133-4
eBook Packages: Computer ScienceComputer Science (R0)