Abstract
Centrality is a key property of complex networks that influences the behavior of dynamical processes, like synchronization and epidemic spreading, and can bring important information about the organization of complex systems, like our brain and society. There are many metrics to quantify the node centrality in networks. Here, we review the main centrality measures and discuss their main features and limitations. The influence of network centrality on epidemic spreading and synchronization is also pointed out in this chapter. Moreover, we present the application of centrality measures to understand the function of complex systems, including biological and cortical networks. Finally, we discuss some perspectives and challenges to generalize centrality measures for multilayer and temporal networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. D. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26(1), 63–72.
Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., & Zhou, C. (2008). Synchronization in complex networks. Physics Reports, 469(3), 93–153.
Bar-Yam, Y. (1997). Dynamics of complex systems (Vol. 213). Reading: Addison-Wesley.
Barabási, A.-L. (2016). Network science. New York: Cambridge University Press.
Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.
Barrat, A., Barthelemy, M., & Vespignani, A. (2008). Dynamical processes on complex networks. Cambridge: Cambridge University Press.
Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C. I., Gómez-Gardenes, J., Romance, M., et al. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1–122.
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4), 175–308.
Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25(2), 163–177.
Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. In Proceedings of the Seventh International Conference on World Wide Web 7, WWW7 (pp. 107–117). Amsterdam: Elsevier.
da Fontoura Costa, L., Rodrigues, F. A., Travieso, G., & Villas Boas, P. R. (2007). Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1), 167–242.
da Fontoura Costa, L., Oliveira Jr, O. N., Travieso, G., Rodrigues, F. A., Villas Boas, P. R., Antiqueira, L., et al. (2011). Analyzing and modeling real-world phenomena with complex networks: A survey of applications. Advances in Physics, 60(3), 329–412.
de Arruda, G. F., da Fontoura Costa, L., Schubert, D., & Rodrigues, F. A. (2014). Structure and dynamics of functional networks in child-onset schizophrenia. Clinical Neurophysiology, 125(8), 1589–1595.
De Domenico, M., Solé-Ribalta, A., Omodei, E., Gómez, S., & Arenas, A. (2013). Centrality in interconnected multilayer networks. Preprint. arXiv:1311.2906.
Donges, J. F., Zou, Y., Marwan, N., & Kurths, J. (2009). The backbone of the climate network. Europhysics Letters, 87(4), 48007.
Dorogovtsev, S. N., Goltsev, A. V., & Mendes, J. F. F. (2006). K-core organization of complex networks. Physical Review Letters, 96(4), 040601.
Fagiolo, G., Reyes, J., & Schiavo, S. (2009). World-trade web: Topological properties, dynamics, and evolution. Physical Review E, 79(3), 036115.
Fortunato, S., & Hric, D. (2016). Community detection in networks: A user guide. Physics Reports, 659, 1–44.
Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40, 35–41.
Goh, K.-I., Cusick, M. E., Valle, D., Childs, B., Vidal, M., & Barabási, A.-L. (2007). The human disease network. Proceedings of the National Academy of Sciences, 104(21), 8685–8690.
Gómez, S., Arenas, A., Borge-Holthoefer, J., Meloni, S., & Moreno, Y. (2010). Discrete-time Markov chain approach to contact-based disease spreading in complex networks. Europhysics Letters, 89(3), 38009.
Gómez-Gardeñes, J., Gómez, S., Arenas, A., Moreno, Y. (2011). Explosive synchronization transitions in scale-free networks. Physical Review Letters, 106(12), 128701.
Guimera, R., Mossa, S., Turtschi, A., & Amaral, L. A. N. (2005). The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles. Proceedings of the National Academy of Sciences, 102(22), 7794–7799.
Holme, P., & Saramäki, J. (2012). Temporal networks. Physics Reports, 519(3), 97–125.
Ichinomiya, T. (2004). Frequency synchronization in a random oscillator network. Physical Review E, 70, 026116.
Jeong, H., Mason, S. P., Barabási, A.-L., & Oltvai, Z. N. (2001). Lethality and centrality in protein networks. Nature, 411(6833), 41.
Keeling, M. J., & Rohani, P. (2008). Modeling infectious diseases in humans and animals. Princeton, NJ: Princeton University Press.
Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., et al. (2010). Identification of influential spreaders in complex networks. Nature Physics, 6(11), 888.
Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203–271.
Krzakala, F., Moore, C., Mossel, E., Neeman, J., Sly, A., Zdeborová, L., et al. (2013). Spectral redemption in clustering sparse networks. Proceedings of the National Academy of Sciences, 110(52), 20935–20940.
Martin, T., Zhang, X., & Newman, M. E. J. (2014). Localization and centrality in networks. Physical review E, 90(5), 052808.
Mitchell, M. (2009). Complexity: A guided tour. New York: Oxford University Press.
Newman, M. E. J. (2013). Spectral community detection in sparse networks. Preprint. arXiv:1308.6494.
Newman, M. E. J. (2005). A measure of betweenness centrality based on random walks. Social Networks, 27(1), 39–54.
Özgür, A., Vu, T., Erkan, G., & Radev, D. R. (2008). Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics, 24(13), i277–i285.
Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3), 925.
Pikovsky, A., Rosenblum, M., & Kurths, J. (2003). Synchronization: A universal concept in nonlinear sciences (Vol. 12). Cambridge: Cambridge University Press.
Radicchi, F., & Castellano, C. (2016). Leveraging percolation theory to single out influential spreaders in networks. Physical Review E, 93(6), 062314.
Reia, S. M., Herrmann, S., & Fontanari, J. F. (2017). Impact of centrality on cooperative processes. Physical Review E, 95(2), 022305.
Restrepo, J. G., Ott, E., & Hunt, B. R. (2005). Onset of synchronization in large networks of coupled oscillators. Physical Review E, 71, 036151.
Rodrigues, F. A., Peron, T. K. D. M., Ji, P., & Kurths, J. (2016). The Kuramoto model in complex networks. Physics Reports, 610, 1–98.
Schultz, P., Peron, T., Eroglu, D., Stemler, T., Ramírez Ávila, G. M., Rodrigues, F. A., et al. (2016). Tweaking synchronization by connectivity modifications. Physical Review E, 93(6), 062211.
Strogatz, S. (2004). Sync: The emerging science of spontaneous order. London: Penguin.
Travençolo, B., & da Fontoura Costa, L. (2008). Accessibility in complex networks. Physics Letters A, 373(1), 89–95.
Travençolo, B. A. N., Viana, M. P., & da Fontoura Costa, L. (2009). Border detection in complex networks. New Journal of Physics, 11(6), 063019.
Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307–310.
Wachi, S., Yoneda, K., & Wu, R. (2005). Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics, 21(23), 4205–4208.
Zuo, X.-N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F. X., Sporns, O., et al. (2011). Network centrality in the human functional connectome. Cerebral Cortex, 22(8), 1862–1875.
Acknowledgements
The author thanks José Fernando Fontanari for useful comments. This work was funded in part by CNPq (grant 305940/2010-4) and FAPESP (grants 2016/25682-5 and grants 2013/07375-0).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Rodrigues, F.A. (2019). Network Centrality: An Introduction. In: Macau, E. (eds) A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems . Nonlinear Systems and Complexity, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-78512-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-78512-7_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78511-0
Online ISBN: 978-3-319-78512-7
eBook Packages: EngineeringEngineering (R0)