Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 22))

Abstract

Centrality is a key property of complex networks that influences the behavior of dynamical processes, like synchronization and epidemic spreading, and can bring important information about the organization of complex systems, like our brain and society. There are many metrics to quantify the node centrality in networks. Here, we review the main centrality measures and discuss their main features and limitations. The influence of network centrality on epidemic spreading and synchronization is also pointed out in this chapter. Moreover, we present the application of centrality measures to understand the function of complex systems, including biological and cortical networks. Finally, we discuss some perspectives and challenges to generalize centrality measures for multilayer and temporal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. D. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26(1), 63–72.

    Article  Google Scholar 

  2. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., & Zhou, C. (2008). Synchronization in complex networks. Physics Reports, 469(3), 93–153.

    Article  MathSciNet  Google Scholar 

  3. Bar-Yam, Y. (1997). Dynamics of complex systems (Vol. 213). Reading: Addison-Wesley.

    MATH  Google Scholar 

  4. Barabási, A.-L. (2016). Network science. New York: Cambridge University Press.

    MATH  Google Scholar 

  5. Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Article  MathSciNet  Google Scholar 

  6. Barrat, A., Barthelemy, M., & Vespignani, A. (2008). Dynamical processes on complex networks. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  7. Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C. I., Gómez-Gardenes, J., Romance, M., et al. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1–122.

    Article  MathSciNet  Google Scholar 

  8. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4), 175–308.

    Article  MathSciNet  Google Scholar 

  9. Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25(2), 163–177.

    Article  Google Scholar 

  10. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. In Proceedings of the Seventh International Conference on World Wide Web 7, WWW7 (pp. 107–117). Amsterdam: Elsevier.

    Google Scholar 

  11. da Fontoura Costa, L., Rodrigues, F. A., Travieso, G., & Villas Boas, P. R. (2007). Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1), 167–242.

    Article  Google Scholar 

  12. da Fontoura Costa, L., Oliveira Jr, O. N., Travieso, G., Rodrigues, F. A., Villas Boas, P. R., Antiqueira, L., et al. (2011). Analyzing and modeling real-world phenomena with complex networks: A survey of applications. Advances in Physics, 60(3), 329–412.

    Article  Google Scholar 

  13. de Arruda, G. F., da Fontoura Costa, L., Schubert, D., & Rodrigues, F. A. (2014). Structure and dynamics of functional networks in child-onset schizophrenia. Clinical Neurophysiology, 125(8), 1589–1595.

    Article  Google Scholar 

  14. De Domenico, M., Solé-Ribalta, A., Omodei, E., Gómez, S., & Arenas, A. (2013). Centrality in interconnected multilayer networks. Preprint. arXiv:1311.2906.

    Google Scholar 

  15. Donges, J. F., Zou, Y., Marwan, N., & Kurths, J. (2009). The backbone of the climate network. Europhysics Letters, 87(4), 48007.

    Article  Google Scholar 

  16. Dorogovtsev, S. N., Goltsev, A. V., & Mendes, J. F. F. (2006). K-core organization of complex networks. Physical Review Letters, 96(4), 040601.

    Article  Google Scholar 

  17. Fagiolo, G., Reyes, J., & Schiavo, S. (2009). World-trade web: Topological properties, dynamics, and evolution. Physical Review E, 79(3), 036115.

    Article  MathSciNet  Google Scholar 

  18. Fortunato, S., & Hric, D. (2016). Community detection in networks: A user guide. Physics Reports, 659, 1–44.

    Article  MathSciNet  Google Scholar 

  19. Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40, 35–41.

    Article  Google Scholar 

  20. Goh, K.-I., Cusick, M. E., Valle, D., Childs, B., Vidal, M., & Barabási, A.-L. (2007). The human disease network. Proceedings of the National Academy of Sciences, 104(21), 8685–8690.

    Article  Google Scholar 

  21. Gómez, S., Arenas, A., Borge-Holthoefer, J., Meloni, S., & Moreno, Y. (2010). Discrete-time Markov chain approach to contact-based disease spreading in complex networks. Europhysics Letters, 89(3), 38009.

    Article  Google Scholar 

  22. Gómez-Gardeñes, J., Gómez, S., Arenas, A., Moreno, Y. (2011). Explosive synchronization transitions in scale-free networks. Physical Review Letters, 106(12), 128701.

    Article  Google Scholar 

  23. Guimera, R., Mossa, S., Turtschi, A., & Amaral, L. A. N. (2005). The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles. Proceedings of the National Academy of Sciences, 102(22), 7794–7799.

    Article  MathSciNet  Google Scholar 

  24. Holme, P., & Saramäki, J. (2012). Temporal networks. Physics Reports, 519(3), 97–125.

    Article  Google Scholar 

  25. Ichinomiya, T. (2004). Frequency synchronization in a random oscillator network. Physical Review E, 70, 026116.

    Article  Google Scholar 

  26. Jeong, H., Mason, S. P., Barabási, A.-L., & Oltvai, Z. N. (2001). Lethality and centrality in protein networks. Nature, 411(6833), 41.

    Article  Google Scholar 

  27. Keeling, M. J., & Rohani, P. (2008). Modeling infectious diseases in humans and animals. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  28. Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., et al. (2010). Identification of influential spreaders in complex networks. Nature Physics, 6(11), 888.

    Article  Google Scholar 

  29. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203–271.

    Article  Google Scholar 

  30. Krzakala, F., Moore, C., Mossel, E., Neeman, J., Sly, A., Zdeborová, L., et al. (2013). Spectral redemption in clustering sparse networks. Proceedings of the National Academy of Sciences, 110(52), 20935–20940.

    Article  MathSciNet  Google Scholar 

  31. Martin, T., Zhang, X., & Newman, M. E. J. (2014). Localization and centrality in networks. Physical review E, 90(5), 052808.

    Article  Google Scholar 

  32. Mitchell, M. (2009). Complexity: A guided tour. New York: Oxford University Press.

    MATH  Google Scholar 

  33. Newman, M. E. J. (2013). Spectral community detection in sparse networks. Preprint. arXiv:1308.6494.

    Google Scholar 

  34. Newman, M. E. J. (2005). A measure of betweenness centrality based on random walks. Social Networks, 27(1), 39–54.

    Article  Google Scholar 

  35. Özgür, A., Vu, T., Erkan, G., & Radev, D. R. (2008). Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics, 24(13), i277–i285.

    Article  Google Scholar 

  36. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., & Vespignani, A. (2015). Epidemic processes in complex networks. Reviews of Modern Physics, 87(3), 925.

    Article  MathSciNet  Google Scholar 

  37. Pikovsky, A., Rosenblum, M., & Kurths, J. (2003). Synchronization: A universal concept in nonlinear sciences (Vol. 12). Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  38. Radicchi, F., & Castellano, C. (2016). Leveraging percolation theory to single out influential spreaders in networks. Physical Review E, 93(6), 062314.

    Article  Google Scholar 

  39. Reia, S. M., Herrmann, S., & Fontanari, J. F. (2017). Impact of centrality on cooperative processes. Physical Review E, 95(2), 022305.

    Article  Google Scholar 

  40. Restrepo, J. G., Ott, E., & Hunt, B. R. (2005). Onset of synchronization in large networks of coupled oscillators. Physical Review E, 71, 036151.

    Article  MathSciNet  Google Scholar 

  41. Rodrigues, F. A., Peron, T. K. D. M., Ji, P., & Kurths, J. (2016). The Kuramoto model in complex networks. Physics Reports, 610, 1–98.

    Article  MathSciNet  Google Scholar 

  42. Schultz, P., Peron, T., Eroglu, D., Stemler, T., Ramírez Ávila, G. M., Rodrigues, F. A., et al. (2016). Tweaking synchronization by connectivity modifications. Physical Review E, 93(6), 062211.

    Article  Google Scholar 

  43. Strogatz, S. (2004). Sync: The emerging science of spontaneous order. London: Penguin.

    Google Scholar 

  44. Travençolo, B., & da Fontoura Costa, L. (2008). Accessibility in complex networks. Physics Letters A, 373(1), 89–95.

    Article  Google Scholar 

  45. Travençolo, B. A. N., Viana, M. P., & da Fontoura Costa, L. (2009). Border detection in complex networks. New Journal of Physics, 11(6), 063019.

    Article  Google Scholar 

  46. Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307–310.

    Article  Google Scholar 

  47. Wachi, S., Yoneda, K., & Wu, R. (2005). Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics, 21(23), 4205–4208.

    Article  Google Scholar 

  48. Zuo, X.-N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F. X., Sporns, O., et al. (2011). Network centrality in the human functional connectome. Cerebral Cortex, 22(8), 1862–1875.

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks José Fernando Fontanari for useful comments. This work was funded in part by CNPq (grant 305940/2010-4) and FAPESP (grants 2016/25682-5 and grants 2013/07375-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Aparecido Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodrigues, F.A. (2019). Network Centrality: An Introduction. In: Macau, E. (eds) A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems . Nonlinear Systems and Complexity, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-78512-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78512-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78511-0

  • Online ISBN: 978-3-319-78512-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics