Abstract
The assessment of latent variables in neurology is mostly achieved using clinical rating scales. Mobile applications can simplify the use of rating scales, providing a quicker quantitative evaluation of these latent variables. However, most health mobile apps do not provide user input validation, they make mistakes at their recommendations, and they are not sufficiently transparent in the way they are run. The goal of the paper was to develop a novel mobile app for cerebellar syndrome quantification and clinical phenotype characterization. SARAEasy is based on the Scale for Assessment and Rating of Ataxia (SARA), and it incorporates the clinical knowledge required to interpret the patient status through the identified phenotypic abnormalities. The quality of the clinical interpretation achieved by the app was evaluated using data records from anonymous patients suffering from SCA36, and the functionality and design was assessed through the development of a usability survey. Our study shows that SARAEasy is able to automatically generate high-quality patient reports that summarize the set of phenotypic abnormalities explaining the achieved cerebellar syndrome quantification. SARAEasy offers low-cost cerebellar syndrome quantification and interpretation for research and clinical purposes, and may help to improve evaluation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Martinez-Martin, P.: Composite rating scales. J. Neurol. Sci. 289(1), 7–11 (2010)
Schmitz-Hübsch, T., Du Montcel, S.T., Baliko, L., Berciano, J., Boesch, S., Depondt, C., et al.: Scale for the assessment and rating of ataxia development of a new clinical scale. Neurology 66(11), 1717–1720 (2006)
Wicks, P., Chiauzzi, E.: ‘Trust but verify’–five approaches to ensure safe medical apps. BMC Med. 13(1), 205 (2015)
Huckvale, K., Adomaviciute, S., Prieto, J.T., Leow, M.K.S., Car, J.: Smartphone apps for calculating insulin dose: a systematic assessment. BMC Med. 13(1), 106 (2015)
Saute, J.A.M., Donis, K.C., Serrano-Munuera, C., Genis, D., Ramirez, L.T., Mazzetti, P., Pérez, L.V., Latorre, P., Sequeiros, J., Matilla-Dueñas, A., Jardim, L.B.: Ataxia rating scales—psychometric profiles, natural history and their application in clinical trials. Cerebellum 11(2), 488–504 (2012)
Beale, T., Heard, S.: openEHR - Release 1.0.2. 2016. http://www.openehr.org/programs/specification/releases/1.0.2. Accessed 04 Jan 2018
Min, H., Ohira, R., Collins, M.A., Bondy, J., Avis, N.E., et al.: Sharing behavioral data through a grid infrastructure using data standards. J. Am. Med. Inf. Assoc. 21(4), 642–649 (2014)
Köhler, S., Vasilevsky, N.A., Engelstad, M., Foster, E., McMurry, J., Aymé, S., Baynam, G., Bello, S.M., Boerkoel, C.F., Boycott, K.M.: The human phenotype ontology in 2017. Nucleic Acids Res. 45(D1), D865–D876 (2017)
Braun, M., Brandt, A.U., Schulz, S., Boeker, M.: Validating archetypes for the multiple sclerosis functional composite. BMC Med. Inf. Decis. Making 14(1), 64 (2014)
openEHR archetype editor. http://www.openehr.org/downloads/archetypeeditor/home. Accessed 04 Dec 2017
Clinical knowledge manager. http://openehr.org/ckm/. Accessed 26 Nov 2017
SARA observation archetype. http://openehr.org/ckm/#showArchetype_1013.1.2661. Accessed 26 Nov 2017
Taboada, M., Rodríguez, H., Martínez, D., Pardo, M., Sobrido, M.J.: Automated semantic annotation of rare disease cases: a case study. Database 2014, bau045 (2014)
Protégé. http://protege.stanford.edu/products.php#desktop-protege. Accessed 02 Dec 2017
HermiT OWL reasoner. http://www.hermit-reasoner.com/. Accessed 02 Jan 2018
Maarouf, H., Taboada, M., Rodriguez, H., Arias, M., Sesar, Á., Sobrido, M.J.: An ontology-aware integration of clinical models, terminologies and guidelines: an exploratory study of the scale for the assessment and rating of ataxia (SARA). BMC Med. Inf. Decis. Making 17(1), 159 (2017)
IBM SPSS software. https://www.ibm.com/analytics/data-science/predictive-analytics/spss-statistical-software. Accessed 20 Dec 2017
Cohen, J.: Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit. Psychol. Bull. 70(4), 213 (1968)
Cortes, A.F.: Manual de Técnicas para el Diseño Participativo de Interfaces de Usuario de Sistemas basados en Software y Hardware. http://www.disenomovil.mobi/multimedia_un/trabajo_final/03_cuestionarios_modelo_usabilidad_web.pdf. Accessed 12 Jan 2018
Brooke, J.: SUS-A quick and dirty usability scale. Usability eval. Ind. 189(194), 4–7 (1996)
Whitepaper medical apps. https://www.nictiz.nl/publicaties/infographics/infographic-medical-apps-is-certification-required. Accessed 15 Jan 2018
Acknowledgment
The authors would like to thank Dr. Manuel Arias and Dr. Ángel Sesar for participating in the validation process to test the validity of SARAEasy.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Maarouf, H., López, V., Sobrido, M.J., Martínez, D., Taboada, M. (2018). SARAEasy: A Mobile App for Cerebellar Syndrome Quantification and Characterization. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10813. Springer, Cham. https://doi.org/10.1007/978-3-319-78723-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-78723-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78722-0
Online ISBN: 978-3-319-78723-7
eBook Packages: Computer ScienceComputer Science (R0)