Abstract
Accurate diagnosis and early detection of various disease conditions are key to improving living conditions in any community. The existing framework for medical image classification depends largely on advanced digital image processing and machine (deep) learning techniques for significant improvement. In this paper, the performance of traditional hand-designed texture descriptors within the image-based learning paradigm is evaluated in comparison with machine-designed descriptors (extracted from pre-trained Convolution Neural Networks). Performance is evaluated, with respect to speed, accuracy and storage requirements, based on four popular medical image datasets. The experiments reveal an increased accuracy with machine-designed descriptors in most cases, though at a higher computational cost. It is therefore necessary to consider other parameters for tradeoff depending on the application being considered.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Nanni, L., Lumini, A., Brahnam, S.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49(2), 117–125 (2010)
Lumini, A., Nanni, L., Brahnam, S.: Multilayer descriptors for medical image classification. Comput. Biol. Med. 72, 239–247 (2016)
Verma, B., McLeod, P., Klevansky, A.: Classification of benign and malignant patterns in digital mammograms for the diagnosis of breast cancer. Expert Syst. Appl. 37(4), 3344–3351 (2010)
Moura, D.C., López, M.A.G.: An evaluation of image descriptors combined with clinical data for breast cancer diagnosis. Int. J. Comput. Assist. Radiol. Surg. 8(4), 561–574 (2013)
Liu, D., Wang, S., Huang, D., Deng, G., Zeng, F., Chen, H.: Medical image classification using spatial adjacent histogram based on adaptive local binary patterns. Comput. Biol. Med. 72, 185–200 (2016)
Kopans, D.B.: The positive predictive value of mammography. Am. J. Roentgenol. 158, 521–526 (1992)
Knutzen, A.M., Gisvold, J.J.: Likelihood of malignant disease for various categories of mammographically detected, nonpalpable breast lesions. In: Mayo Clinic Proceedings (1993)
Jiang, Y., et al.: Malignant and benign clustered microcalcifications: automated feature analysis and classification. Radiology 198, 671–678 (1996)
Hobson, P., Lovell, B.C., Percannella, G., Saggese, A., Vento, M., Wiliem, A.: HEp-2 staining pattern recognition at cell and specimen levels: datasets, algorithms and results. Pattern Recognit. Lett. 82, 12–22 (2016)
Rubin, G.D.: Data explosion: the challenge of multidetector-row CT. Eur. J. Radiol. 2, 74–80 (2000)
Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J.: Multi-scale convolutional neural networks for lung nodule classification. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 588–599. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19992-4_46
Tajbakhsh, N., et al.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016)
Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D., Chen, M.: Medical image classification with convolutional neural network. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 844–848 (2014)
Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)
Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer histopathological image classification. IEEE Trans. Biomed. Eng. 63, 1455–1462 (2016)
Gao, Z., Wang, L., Zhou, L., Zhang, J.: HEp-2 cell image classification with deep convolutional neural networks. IEEE J. Biomed. Heal. Inform. 21(2), 416–428 (2017)
Bello-Cerezo, R., Bianconi, F., Cascianelli, S., Fravolini, M.L., di Maria, F., Smeraldi, F.: Hand-designed local image descriptors vs. off-the-shelf CNN-based features for texture classification: an experimental comparison. In: De Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C. (eds.) KES-IIMSS 2017. SIST, vol. 76, pp. 1–10. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59480-4_1
Liu, L., Fieguth, P., Guo, Y., Wang, X., Pietikäinen, M.: Local binary features for texture classification: taxonomy and experimental study. Pattern Recognit. 62, 135–160 (2017)
Hertel, L., Barth, E., Kaster, T., Martinetz, T.: Deep convolutional neural networks as generic feature extractors. In: Proceedings of the International Joint Conference on Neural Networks, vol. 2015, September (2015)
Chebira, A., et al.: A multiresolution approach to automated classification of protein subcellular location images. BMC Bioinform. 8, 210 (2007)
Jantzen, J., Norup, J., Dounias, G., Bjerregaard, B.: Pap-smear benchmark data for pattern classification. In: Proceedings of NiSIS 2005 Nature Inspired Smart Information System, pp. 1–9 (2005)
Boland, M.V., Murphy, R.F.: A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 17(12), 1213–1223 (2001)
Nanni, L., Ghidoni, S., Brahnam, S.: Handcrafted vs. non-handcrafted features for computer vision classification. Pattern Recognit. 71, 158–172 (2017)
Liu, L., Chen, J., Fieguth, P., Zhao, G., Chellappa, R., Pietikainen, M.: A survey of recent advances in texture representation. arXiv Preprint arXiv:1801.10324 (2018)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Krizhevsky, A., Sulskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems vol. 60, no. 6, pp. 84–90 (2012)
Vedaldi, A., Lenc, K.: Convolutional neural networks for MATLAB (2014)
Adetiba, E., Olugbara, O.O.: Lung cancer prediction using neural network ensemble with histogram of oriented gradient genomic features. Sci. World J. 2015, 17p (2015)
Adetiba, E., Olugbara, O.O.: Improved classification of lung cancer using radial basis function neural network with affine transforms of voss representation. PLoS ONE 10(12), e0143542 (2015)
Cimpoi, M., Maji, S., Kokkinos, I., Vedaldi, A.: Deep filter banks for texture recognition, description, and segmentation. Int. J. Comput. Vis. 118(1), 65–94 (2016)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks, pp. 1097–1105 (2012)
Acknowledgements
This research was sponsored under the Centre for Research Innovation and Development Research Grant of Covenant University. The authors who shared their MATLAB code and toolboxes for LBP, LTP, LPQ, CLBP, RICLBP and MatConvNet are appreciated.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Badejo, J.A., Adetiba, E., Akinrinmade, A., Akanle, M.B. (2018). Medical Image Classification with Hand-Designed or Machine-Designed Texture Descriptors: A Performance Evaluation. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10814. Springer, Cham. https://doi.org/10.1007/978-3-319-78759-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-78759-6_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-78758-9
Online ISBN: 978-3-319-78759-6
eBook Packages: Computer ScienceComputer Science (R0)