Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient Dynamic Approximate Distance Oracles for Vertex-Labeled Planar Graphs

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10787))

Included in the following conference series:

  • 600 Accesses

Abstract

Let G be a graph where each vertex is associated with a label. A Vertex-Labeled Approximate Distance Oracle is a data structure that, given a vertex v and a label \(\lambda \), returns a \((1+\varepsilon )\)-approximation of the distance from v to the closest vertex with label \(\lambda \) in G. Such an oracle is dynamic if it also supports label changes. In this paper we present three different dynamic approximate vertex-labeled distance oracles for planar graphs, all with polylogarithmic query and update times, and nearly linear space requirements. No such oracles were previously known.

For a full version of this paper, see https://arxiv.org/abs/1707.02414. This research was supported by the ISRAEL SCIENCE FOUNDATION (grant No. 794/13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We assume that a single comparison or addition of two numbers takes constant time.

  2. 2.

    The discussion of \(\alpha \)-layered graphs in Sect. 2 refers to directed graphs, and hence also applies to undirected graphs.

  3. 3.

    We assume that the endpoints of the intervals are vertices on Q, since otherwise once can add artificial vertices on Q without asymptotically changing the size of the graph.

  4. 4.

    Formally, one needs to show that Lemma 1 holds for vertex-labeled oracles as well. See our full paper at https://arxiv.org/abs/1707.02414.

References

  1. Łącki, J., Ocwieja, J., Pilipczuk, M., Sankowski, P., Zych, A.: The power of dynamic distance oracles: efficient dynamic algorithms for the steiner tree. In: STOC, pp. 11–20 (2015)

    Google Scholar 

  2. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with \({O}(1)\) worst case access time. J. ACM 31(3), 538–544 (1984). https://doi.org/10.1145/828.1884

    Article  MathSciNet  MATH  Google Scholar 

  3. Gu, Q.-P., Xu, G.: Constant query time \((1+\epsilon )\)-approximate distance oracle for planar graphs. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 625–636. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48971-0_53

    Chapter  Google Scholar 

  4. Henzinger, M.R., Klein, P.N., Rao, S., Subramanian, S.: Faster shortest-path algorithms for planar graphs. J. Comput. Syst. Sci. 55(1), 3–23 (1997). https://doi.org/10.1006/jcss.1997.1493

    Article  MathSciNet  MATH  Google Scholar 

  5. Klein, P.N.: Preprocessing an undirected planar network to enable fast approximate distance queries. In: SODA, pp. 820–827 (2002)

    Google Scholar 

  6. Klein, P.N.: Multiple-source shortest paths in planar graphs. In: SODA, pp. 146–155 (2005)

    Google Scholar 

  7. Li, M., Ma, C.C.C., Ning, L.: \((1+\epsilon )\)-distance oracles for vertex-labeled planar graphs. In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS, vol. 7876, pp. 42–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38236-9_5

    Chapter  Google Scholar 

  8. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mozes, S., Skop, E.E.: Efficient vertex-label distance oracles for planar graphs. In: Sanità, L., Skutella, M. (eds.) WAOA 2015. LNCS, vol. 9499, pp. 97–109. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28684-6_9

    Chapter  Google Scholar 

  10. Pagh, R., Rodler, F.F.: Cuckoo hashing. In: auf der Heide, F.M. (ed.) ESA 2001. LNCS, vol. 2161, pp. 121–133. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44676-1_10

    Chapter  Google Scholar 

  11. Thorup, M.: Compact oracles for reachability and approximate distances in planar digraphs. J. ACM 51(6), 993–1024 (2004). https://doi.org/10.1145/1039488.1039493

    Article  MathSciNet  MATH  Google Scholar 

  12. Wilkinson, B.T.: Amortized bounds for dynamic orthogonal range reporting. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 842–856. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44777-2_69

    Google Scholar 

  13. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space \(\Theta \)(N). Inf. Process. Lett. 17(2), 81–84 (1983). https://doi.org/10.1016/0020-0190(83)90075-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Wulff-Nilsen, C.: Approximate distance oracles for planar graphs with improved query time-space tradeoff. In: SODA, pp. 351–362 (2016)

    Google Scholar 

Download references

Acknowledgements

We thank Paweł Gawrychowski and Oren Weimann for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shay Mozes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laish, I., Mozes, S. (2018). Efficient Dynamic Approximate Distance Oracles for Vertex-Labeled Planar Graphs. In: Solis-Oba, R., Fleischer, R. (eds) Approximation and Online Algorithms. WAOA 2017. Lecture Notes in Computer Science(), vol 10787. Springer, Cham. https://doi.org/10.1007/978-3-319-89441-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-89441-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-89440-9

  • Online ISBN: 978-3-319-89441-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics