Abstract
Frequently, high-dimensional features are used to represent data to be classified. This paper proposes a new approach to learn interpretable classification models from such high-dimensional data representation. To this end, we extend a popular prototype-based classification algorithm, the matrix learning vector quantization, to incorporate an enhanced feature selection objective via \(L_1\)-regularization. In contrast to previous work, we propose a framework that directly optimizes this objective using the alternating direction method of multipliers (ADMM) and manifold optimization. We evaluate our method on synthetic data and on real data for speech-based emotion recognition. Particularly, we show that our method achieves state-of-the-art results on the Berlin Database of Emotional speech and show its abilities to select relevant dimensions from the eGeMAPS set of audio features.
F. Lischke—This work was supported in part by SAB grant number 100231931.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009)
Ali, H., Hariharan, M., Yaacob, S., Adom, A.H.: Facial emotion recognition using empirical mode decomposition. Expert Syst. Appl. 42(3), 1261–1277 (2015)
Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)
Bi, J., Bennett, K., Embrechts, M., Breneman, C., Song, M.: Dimensionality reduction via sparse support vector machines. JMLR 3(Mar), 1229–1243 (2003)
Biehl, M., Hammer, B., Villmann, T.: Prototype-based models in machine learning. Wiley Interdisc. Rev.: Cogn. Sci. 7(2), 92–111 (2016)
Biehl, M., Hammer, B., Schleif, F.M., Schneider, P., Villmann, T.: Stationarity of matrix relevance learning vector quantization. Mach. Learn. Rep. 3, 1–17 (2009)
Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New York (2006)
Bojer, T., Hammer, B., Schunk, D., Von Toschanowitz, K.: Relevance determination in learning vector quantization. In: Proceedings of ESANN (2001)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)
Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W., Weiss, B.: A database of German emotional speech. In: Interspeech, vol. 5, pp. 1517–1520 (2005)
Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)
Donoho, D.L.: De-noising by soft-thresholding. IEEE TIT 41(3), 613–627 (1995)
Donoho, D.L.: For most large underdetermined systems of linear equations the minimal \(\ell \)1-norm solution is also the sparsest solution. CPAMA 59(6), 797–829 (2006)
Eyben, F., Scherer, K.R., Schuller, B.W., Sundberg, J., André, E., Busso, C., Devillers, L.Y., Epps, J., Laukka, P., Narayanan, S.S., Truong, K.P.: The Geneva minimalistic acoustic parameter set (GeMAPS) for voice research and affective computing. IEEE TAC 7(2), 190–202 (2016)
Eyben, F., Weninger, F., Gross, F., Schuller, B.: Recent developments in openSMILE, the munich open-source multimedia feature extractor. In: Proceedings of the 21st ACM, pp. 835–838. ACM (2013)
Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Netw. 15(8), 1059–1068 (2002)
Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE TNN 13(2), 415–425 (2002)
Kaden, M., Lange, M., Nebel, D., Riedel, M., Geweniger, T., Villmann, T.: Aspects in classification learning - review of recent developments in learning vector quantization. Found. Comput. Decis. Sci. 39(2), 79–105 (2014)
Kanth, N.R., Saraswathi, S.: Efficient speech emotion recognition using binary support vector machines multiclass SVM. In: 2015 IEEE ICCIC, December 2015
Kim, J., Truong, K.P., Englebienne, G., Evers, V.: Learning spectro-temporal features with 3D CNNs for speech emotion recognition. arXiv preprint arXiv:1708.05071 (2017)
Kohonen, T.: Learning vector quantization. In: Kohonen, T. (ed.) Self-Organizing Maps. SSINF, vol. 30, pp. 175–189. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-97610-0_6
Korkmaz, O.E., Atasoy, A.: Emotion recognition from speech signal using mel-frequency cepstral coefficients. In: 2015 9th ELECO, pp. 1254–1257, November 2015
Lee, J., Tashev, I.: High-level feature representation using recurrent neural network for speech emotion recognition. In: Interspeech 2015. ISCA, September 2015
Mao, Q., Dong, M., Huang, Z., Zhan, Y.: Learning salient features for speech emotion recognition using convolutional neural networks. IEEE Trans. Multimedia 16(8), 2203–2213 (2014)
Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39(2), 117–129 (1987)
Ng, A.Y.: Feature selection, L1 vs. L2 regularization, and rotational invariance. In: Proceedings of the 21th ICML, ICML 2004, p. 78. ACM, New York (2004)
Obozinski, G., Taskar, B., Jordan, M.: Multi-task feature selection. Statistics Department, UC Berkeley, Technical report 2 (2006)
Ofodile, I., Kulkarni, K., Corneanu, C.A., Escalera, S., Baro, X., Hyniewska, S., Allik, J., Anbarjafari, G.: Automatic recognition of deceptive facial expressions of emotion (2017)
Palo, H., Mohanty, M., Chandra, M.: Efficient feature combination techniques for emotional speech classification. IJST 19(1), 135–150 (2016)
Riedel, M., Rossi, F., Kästner, M., Villmann, T.: Regularization in relevance learning vector quantization using \(l_1\)-norms. In: Verleysen, M. (ed.) Proceedings of ESANN 2013, pp. 17–22 (2013)
Saeys, Y., Abeel, T., Van de Peer, Y.: Robust feature selection using ensemble feature selection techniques. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5212, pp. 313–325. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87481-2_21
Sato, A., Yamada, K.: Generalized learning vector quantization. In: Advances in Neural Information Processing Systems, pp. 423–429 (1996)
Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Comput. 21(12), 3532–3561 (2009)
Schneider, P., Bunte, K., Stiekema, H., Hammer, B., Villmann, T., Biehl, M.: Regularization in matrix relevance learning. IEEE Trans. Neural Netw. 21(5), 831–840 (2010)
Schuller, B., Steidl, S., Batliner, A.: The INTERSPEECH 2009 emotion challenge. In: 10th Annual Conference of the ISCA (2009)
Schuller, B., Steidl, S., Batliner, A., Schiel, F., Krajewski, J.: The INTERSPEECH 2011 speaker state challenge. In: 12th Annual Conference of the ISCA (2011)
Schuller, B., Steidl, S., Batliner, A., et al.: The INTERSPEECH 2017 computational paralinguistics challenge: addressee, cold and snoring. In: ComParE, Interspeech 2017, pp. 3442–3446 (2017)
Sinith, M.S., Aswathi, E., Deepa, T.M., Shameema, C.P., Rajan, S.: Emotion recognition from audio signals using support vector machine. In: 2015 IEEE RAICS, pp. 139–144, December 2015
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Ser. B (Methodol.) 267–288 (1996)
Townsend, J., Koep, N., Weichwald, S.: Pymanopt: a python toolbox for optimization on manifolds using automatic differentiation. J. Mach. Learn. Res. 17(137), 1–5 (2016)
Villmann, T., Bohnsack, A., Kaden, M.: Can learning vector quantization be an alternative to SVM and deep learning? JAISCR 7(1), 65–81 (2017)
Wang, K., An, N., Li, B.N., Zhang, Y., Li, L.: Speech emotion recognition using fourier parameters. IEEE TAC 6(1), 69–75 (2015)
Wen, G., Li, H., Huang, J., Li, D., Xun, E.: Random deep belief networks for recognizing emotions from speech signals. Comput. Intell. Neurosci. 2017 (2017)
Zhang, Y., Zhang, L., Hossain, M.A.: Adaptive 3D facial action intensity estimation and emotion recognition. Expert Syst. Appl. 42(3), 1446–1464 (2015)
Zhu, J., Rosset, S., Tibshirani, R., Hastie, T.J.: 1-norm support vector machines. In: Advances in Neural Information Processing Systems, pp. 49–56 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Lischke, F., Neumann, T., Hellbach, S., Villmann, T., Böhme, HJ. (2018). Direct Incorporation of \(L_1\)-Regularization into Generalized Matrix Learning Vector Quantization. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10841. Springer, Cham. https://doi.org/10.1007/978-3-319-91253-0_61
Download citation
DOI: https://doi.org/10.1007/978-3-319-91253-0_61
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91252-3
Online ISBN: 978-3-319-91253-0
eBook Packages: Computer ScienceComputer Science (R0)