Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Factorization Meets Memory Network: Learning to Predict Activity Popularity

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10828))

Included in the following conference series:

Abstract

We address the problem, i.e., early prediction of activity popularity in event-based social networks, aiming at estimating the final popularity of new activities to be published online, which promotes applications such as online advertising recommendation. A key to success for this problem is how to learn effective representations for the three common and important factors, namely, activity organizer (who), location (where), and textual introduction (what), and further model their interactions jointly. Most of existing relevant studies for popularity prediction usually suffer from performing laborious feature engineering and their models separate feature representation and model learning into two different stages, which is sub-optimal from the perspective of optimization. In this paper, we introduce an end-to-end neural network model which combines the merits of Memory netwOrk and factOrization moDels (MOOD), and optimizes them in a unified learning framework. The model first builds a memory network module by proposing organizer and location attentions to measure their related word importance for activity introduction representation. Afterwards, a factorization module is employed to model the interaction of the obtained introduction representation with organizer and location identity representations to generate popularity prediction. Experiments on real datasets demonstrate MOOD indeed outperforms several strong alternatives, and further validate the rational design of MOOD by ablation test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/Autumn945/MOOD.

References

  1. Szabó, G., Huberman, B.A.: Predicting the popularity of online content. J. Commun. ACM 53(8), 80–88 (2010)

    Article  Google Scholar 

  2. Figueiredo, F., Benevenuto, F., Almeida, J.M.: The tube over time: characterizing popularity growth of youtube videos. In: WSDM, pp. 745–754 (2011)

    Google Scholar 

  3. Chang, B., Zhu, H., Ge, Y., Chen, E., Xiong, H., Tan, C.: Predicting the popularity of online serials with autoregressive models. In: CIKM, pp. 1339–1348 (2014)

    Google Scholar 

  4. Agarwal, N., Liu, H., Tang, L., Yu, P.S.: Identifying the influential bloggers in a community. In: WSDM, pp. 207–218 (2008)

    Google Scholar 

  5. Liu, X., He, Q., Tian, Y., Lee, W., McPherson, J., Han, J.: Event-based social networks: linking the online and offline social worlds. In: SIGKDD, pp. 1032–1040 (2012)

    Google Scholar 

  6. Zhang, W., Wang, J., Feng, W.: Combining latent factor model with location features for event-based group recommendation. In: SIGKDD, pp. 910–918 (2013)

    Google Scholar 

  7. Du, R., Yu, Z., Mei, T., Wang, Z., Wang, Z., Guo, B.: Predicting activity attendance in event-based social networks: content, context and social influence. In: UbiComp, pp. 425–434 (2014)

    Google Scholar 

  8. She, J., Tong, Y., Chen, L.: Utility-aware social event-participant planning. In: SIGMOD, pp. 1629–1643 (2015)

    Google Scholar 

  9. Khosla, A., Sarma, A.D., Hamid, R.: What makes an image popular? In: WWW, pp. 867–876 (2014)

    Google Scholar 

  10. Zhao, Q., Erdogdu, M.A., He, H.Y., Rajaraman, A., Leskovec, J.: SEISMIC: a self-exciting point process model for predicting tweet popularity. In: SIGKDD, pp. 1513–1522 (2015)

    Google Scholar 

  11. Xiao, S., Yan, J., Li, C., Jin, B., Wang, X., Yang, X., Chu, S.M., Zha, H.: On modeling and predicting individual paper citation count over time. In: IJCAI, pp. 2676–2682 (2016)

    Google Scholar 

  12. Rizoiu, M., Xie, L., Sanner, S., Cebrián, M., Yu, H., Hentenryck, P.V.: Expecting to be HIP: hawkes intensity processes for social media popularity. In: WWW, pp. 735–744 (2017)

    Google Scholar 

  13. Cui, P., Wang, F., Liu, S., Ou, M., Yang, S., Sun, L.: Who should share what?: item-level social influence prediction for users and posts ranking. In: SIGIR, pp. 185–194 (2011)

    Google Scholar 

  14. Martin, T., Hofman, J.M., Sharma, A., Anderson, A., Watts, D.J.: Exploring limits to prediction in complex social systems. In: WWW, pp. 683–694 (2016)

    Google Scholar 

  15. Dimitrov, D., Singer, P., Lemmerich, F., Strohmaier, M.: What makes a link successful on Wikipedia? In: WWW, pp. 917–926 (2017)

    Google Scholar 

  16. Sukhbaatar, S., Szlam, A., Weston, J., Fergus, R.: End-to-end memory networks. In: NIPS, pp. 2440–2448 (2015)

    Google Scholar 

  17. Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury, J., Gulrajani, I., Zhong, V., Paulus, R., Socher, R.: Ask me anything: dynamic memory networks for natural language processing. In: ICML, pp. 1378–1387 (2016)

    Google Scholar 

  18. Shen, H., Wang, D., Song, C., Barabási, A.: Modeling and predicting popularity dynamics via reinforced poisson processes. In: AAAI, pp. 291–297 (2014)

    Google Scholar 

  19. Wu, B., Mei, T., Cheng, W., Zhang, Y.: Unfolding temporal dynamics: predicting social media popularity using multi-scale temporal decomposition. In: AAAI, pp. 272–278 (2016)

    Google Scholar 

  20. Chen, J., Song, X., Nie, L., Wang, X., Zhang, H., Chua, T.: Micro tells macro: predicting the popularity of micro-videos via a transductive model. In: MM, pp. 898–907 (2016)

    Google Scholar 

  21. Zhang, W., Wang, W., Wang, J., Zha, H.: User-guided hierarchical attention network for multi-modal social image popularity prediction. In: WWW, pp. 1277–1286 (2018). https://dl.acm.org/citation.cfm?id=3186026

  22. He, X., Gao, M., Kan, M., Liu, Y., Sugiyama, K.: Predicting the popularity of web 2.0 items based on user comments. In: SIGIR, pp. 233–242 (2014)

    Google Scholar 

  23. Li, C., Ma, J., Guo, X., Mei, Q.: DeepCas: an end-to-end predictor of information cascades. In: WWW, pp. 577–586 (2017)

    Google Scholar 

  24. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. JMLR 3, 993–1022 (2003)

    MATH  Google Scholar 

  25. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  26. Wang, H., Wang, N., Yeung, D.Y.: Collaborative deep learning for recommender systems. In: SIGKDD, pp. 1235–1244. ACM (2015)

    Google Scholar 

  27. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.: Neural collaborative filtering. In: WWW, pp. 173–182 (2017)

    Google Scholar 

  28. Tang, D., Qin, B., Liu, T.: Aspect level sentiment classification with deep memory network. In: EMNLP, pp. 214–224 (2016)

    Google Scholar 

  29. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. In: NIPS, pp. 6000–6010 (2017)

    Google Scholar 

  30. Aizenberg, N., Koren, Y., Somekh, O.: Build your own music recommender by modeling internet radio streams. In: WWW, pp. 1–10 (2012)

    Google Scholar 

  31. Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for personalized tag recommendation. In: WSDM, pp. 81–90. ACM (2010)

    Google Scholar 

  32. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix and Tensor Factorizations - Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, Hoboken (2009)

    Google Scholar 

  33. Duchi, J.C., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. JMLR 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Zhang, W., Wang, J.: A collective Bayesian poisson factorization model for cold-start local event recommendation. In: SIGKDD, pp. 1455–1464 (2015)

    Google Scholar 

  35. Yin, H., Hu, Z., Zhou, X., Wang, H., Zheng, K., Nguyen, Q.V.H., Sadiq, S.: Discovering interpretable geo-social communities for user behavior prediction. In: ICDE, pp. 942–953. IEEE (2016)

    Google Scholar 

  36. Ma, H., Liu, C., King, I., Lyu, M.R.: Probabilistic factor models for web site recommendation. In: SIGIR, pp. 265–274. ACM (2011)

    Google Scholar 

  37. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  38. Ahmed, M., Spagna, S., Huici, F., Niccolini, S.: A peek into the future: predicting the evolution of popularity in user generated content. In: WSDM, pp. 607–616 (2013)

    Google Scholar 

  39. Yuan, Q., Zhang, W., Zhang, C., Geng, X., Cong, G., Han, J.: PRED: periodic region detection for mobility modeling of social media users. In: WSDM, pp. 263–272 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSFC (61702190), Shanghai Sailing Program (17YF1404500), SHMEC (16CG24), NSFC-Zhejiang (U1609220), and NSFC (61672231, 61672236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, W., Zhang, W., Wang, J. (2018). Factorization Meets Memory Network: Learning to Predict Activity Popularity. In: Pei, J., Manolopoulos, Y., Sadiq, S., Li, J. (eds) Database Systems for Advanced Applications. DASFAA 2018. Lecture Notes in Computer Science(), vol 10828. Springer, Cham. https://doi.org/10.1007/978-3-319-91458-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91458-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91457-2

  • Online ISBN: 978-3-319-91458-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics