Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Discrete Bacterial Memetic Evolutionary Algorithm for the Time Dependent Traveling Salesman Problem

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations (IPMU 2018)

Abstract

The Time Dependent Traveling Salesman Problem (TDTSP) that is addressed in this paper is a variant of the well-known Traveling Salesman Problem. In this problem the distances between nodes vary in time (are longer in rush hours in the city centre), Our Discrete Bacterial Evolutionary Algorithm (DBMEA) was tested on benchmark problems (on bier127 and on a self-generated problem with 250 nodes) with various jam factors. The results demonstrate the effectiveness of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study, pp. 1–81. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  2. Botzheim, J., Cabrita, C., Kóczy, L.T., Ruano, A.E.: Fuzzy rule extraction by bacterial memetic algorithms. In: Proceedings of the 11th World Congress of International Fuzzy Systems Association, IFSA 2005, Beijing, China, pp. 1563–1568 (2005)

    Google Scholar 

  3. Földesi, P., Botzheim, J.: Modeling of loss aversion in solving fuzzy road transport traveling salesman problem using eugenic bacterial memetic algorithm. Memetic Comput. 2(4), 259–271 (2010)

    Article  Google Scholar 

  4. Hoos, H.H., Stutzle, T.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  5. Inoue, T., Furuhashi, T., Maeda, H., Takaba, M.: A study on interactive nurse scheduling support system using bacterial evolutionary algorithm engine. Trans. Inst. Elect. Eng. Jpn. 122-C, 1803–1811 (2002)

    Google Scholar 

  6. Kóczy, L.T., Földesi, P., Tüű-Szabó, B.: An effective discrete bacterial memetic evolutionary algorithm for the traveling salesman problem. Int. J. Intell. Syst. 32(8), 862–876 (2017)

    Article  Google Scholar 

  7. Kóczy, L.T., Földesi, P., Tüű-Szabó, B.: Enhanced discrete bacterial memetic evolutionary algorithm-an efficacious metaheuristic for the traveling salesman optimization. Inf. Sci. (2017)

    Google Scholar 

  8. Li, F., Golden, B., Wasil, E.: Solving the time dependent traveling salesman problem. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Next Wave in Computing, Optimization, and Decision Technologies. Operations Research/Computer Science Interfaces Series, vol. 29. Springer, Boston (2005). https://doi.org/10.1007/0-387-23529-9_12

    Chapter  Google Scholar 

  9. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts -towards memetic algorithms. Technical report Caltech Concurrent Computation Program, Report. 826, California Institute of Technology, Pasadena, USA (1989)

    Google Scholar 

  10. Nawa, N.E., Furuhashi, T.: Fuzzy System Parameters Discovery by Bacterial Evolutionary Algorithm. IEEE Trans. Fuzzy Syst. 7, 608–616 (1999)

    Article  Google Scholar 

  11. Schneider, J.: The time-dependent traveling salesman problem. PhysicaA. 314, 151–155 (2002)

    Article  MathSciNet  Google Scholar 

  12. Tüű-Szabó, B., Földesi, P., Kóczy, T.L.: Improved discrete bacterial memetic evolutionary algorithm for the traveling salesman problem. In: Proceedings of the Computational Intelligence in Information Systems Conference (CIIS 2016), Bandar Seri Begawan, Brunei, pp. 27–38 (2017)

    Google Scholar 

Download references

Acknowledgement

This work was supported by National Research, Development and Innovation Office (NKFIH) K108405, K124055.

Supported by the ÚNKP-17-3 New National Excellence Program of the Ministry of Human Capacities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boldizsár Tüű-Szabó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tüű-Szabó, B., Földesi, P., Kóczy, L.T. (2018). Discrete Bacterial Memetic Evolutionary Algorithm for the Time Dependent Traveling Salesman Problem. In: Medina, J., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-319-91473-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91473-2_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91472-5

  • Online ISBN: 978-3-319-91473-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics