Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Study of Different Families of Fusion Functions for Combining Classifiers in the One-vs-One Strategy

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations (IPMU 2018)

Abstract

In this work we study the usage of different families of fusion functions for combining classifiers in a multiple classifier system of One-vs-One (OVO) classifiers. OVO is a decomposition strategy used to deal with multi-class classification problems, where the original multi-class problem is divided into as many problems as pair of classes. In a multiple classifier system, classifiers coming from different paradigms such as support vector machines, rule induction algorithms or decision trees are combined. In the literature, several works have addressed the usage of classifier selection methods for these kinds of systems, where the best classifier for each pair of classes is selected. In this work, we look at the problem from a different perspective aiming at analyzing the behavior of different families of fusion functions to combine the classifiers. In fact, a multiple classifier system of OVO classifiers can be seen as a multi-expert decision making problem. In this context, for the fusion functions depending on weights or fuzzy measures, we propose to obtain these parameters from data. Backed-up by a thorough experimental analysis we show that the fusion function to be considered is a key factor in the system. Moreover, those based on weights or fuzzy measures can allow one to better model the aggregation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.keel.es.

References

  1. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)

    Google Scholar 

  2. Alcalá-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Multiple-Valued Logic Soft Comput. 17(2–3), 255–287 (2011)

    Google Scholar 

  3. Beliakov, G., Bustince, H., Pradera, A.: A Practical Guide to Averaging Functions, 2nd edn. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24753-3

    Book  MATH  Google Scholar 

  4. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73721-6

    Book  MATH  Google Scholar 

  5. Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Directional monotonicity of fusion functions. Eur. J. Oper. Res. 244, 300–308 (2015)

    Article  MathSciNet  Google Scholar 

  6. Calvo, T., Mayor, G., Mesiar, R.: Aggregation Operators. New Trends and Applications. Physica-Verlag, Heidelberg (2002). https://doi.org/10.1007/978-3-7908-1787-4

    Book  MATH  Google Scholar 

  7. Chen, Y., Wang, J.Z.: Support vector learning for fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 11(6), 716–728 (2003)

    Article  Google Scholar 

  8. Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 1953–1954 (1953)

    MathSciNet  Google Scholar 

  9. Cohen, W.W.: Fast effective rule induction. In: Proceedings of the Twelfth International Conference on Machine Learning, ICML1995, pp. 1–10 (1995)

    Chapter  Google Scholar 

  10. Elkano, M., Galar, M., Sanz, J., Fernandez, A., Barrenechea, E., Herrera, F., Bustince, H.: Enhancing multi-class classification in farc-hd fuzzy classifier: on the synergy between n-dimensional overlap functions and decomposition strategies. IEEE Trans. Fuzzy Syst. 23(5), 1562–1580 (2015)

    Article  Google Scholar 

  11. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: Dynamic classifier selection for one-vs-one strategy: avoiding non-competent classifiers. Pattern Recogn. 46(12), 3412–3424 (2013)

    Article  Google Scholar 

  12. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn. 44(8), 1761–1776 (2011)

    Article  Google Scholar 

  13. Galar, M., Fernández, A., Barrenechea, E., Herrera, F.: DRCW-OVO: distance-based relative competence weighting combination for one-vs-one strategy in multi-class problems. Pattern Recogn. 48(1), 28–42 (2015)

    Article  Google Scholar 

  14. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180, 2044–2064 (2010)

    Article  Google Scholar 

  15. Grabisch, M.: A new algorithm for identifying fuzzy measures and its application to pattern recognition. In: International Joint Conference of the 4th IEEE International Conference on Fuzzy Systems and the 2nd International Fuzzy Engineering Symposium, pp. 145–150 (1995)

    Google Scholar 

  16. Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  17. Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 16(1), 66–75 (1994)

    Article  Google Scholar 

  18. Hüllermeier, E., Vanderlooy, S.: Combining predictions in pairwise classification: an optimal adaptive voting strategy and its relation to weighted voting. Pattern Recogn. 43(1), 128–142 (2010)

    Article  Google Scholar 

  19. Kang, S., Cho, S., Kang, P.: Multi-class classification via heterogeneous ensemble of one-class classifiers. Eng. Appl. Artif. Intell. 43, 35–43 (2015)

    Article  Google Scholar 

  20. Lorena, A.C., Carvalho, A.C., Gama, J.M.: A review on the combination of binary classifiers in multiclass problems. Artif. Intell. Rev. 30(1–4), 19–37 (2008)

    Article  Google Scholar 

  21. Lucca, G., Sanz, J., Dimuro, G., Bedregal, B., Mesiar, R., Kolesárová, A., Bustince, H.: Preaggregation functions: construction and an application. IEEE Trans. Fuzzy Syst. 24, 260–272 (2016)

    Article  Google Scholar 

  22. Mendialdua, I., Martnez-Otzeta, J.M., Rodriguez-Rodriguez, I., Ruiz-Vazquez, T., Sierra, B.: Dynamic selection of the best base classifier in one versus one. Knowl.-Based Syst. 85, 298–306 (2015)

    Article  Google Scholar 

  23. Paternain, D., Campión, M.J., Bustince, H., Perfilieva, I., Mesiar, R.: Internal fusion functions. IEEE Trans. Fuzzy Syst. 26, 487–503 (2017)

    Article  Google Scholar 

  24. Quinlan, J.R.: C45: Programs for Machine Learning, 1st edn. Morgan Kaufmann Publishers, San Mateo (1993)

    Google Scholar 

  25. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  26. Yager, R.: Quantifier guided aggregation using owa operators. Int. J. Intell. Syst. 11, 49–73 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Spanish Ministry of Science and Technology under Project TIN2016-77356-P (AEI/FEDER, UE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Paternain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uriz, M., Paternain, D., Jurio, A., Bustince, H., Galar, M. (2018). A Study of Different Families of Fusion Functions for Combining Classifiers in the One-vs-One Strategy. In: Medina, J., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-91476-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91476-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91475-6

  • Online ISBN: 978-3-319-91476-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics