Abstract
Multi-objective optimization under epistemic uncertainty is today present as an active research area reflecting reality of many practical applications. In this paper, we try to present and discuss relevant state-of-the-art related to multi-objective optimisation with uncertain-valued objective. In fact, we give an overview of approaches that have already been proposed in this context and limitations of each one of them. We also present recent researches developed for taking into account uncertainty in the Pareto optimality aspect.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barrico, C., Antunes, C.H.: Robustness analysis in multi-objective optimization using a degree of robustness concept. In: IEEE CEC, pp. 1887–1892 (2006)
Bahri, O., Ben Amor, N., El-Ghazali, T.: New Pareto approach for ranking triangular fuzzy numbers. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014, Part II. CCIS, vol. 443, pp. 264–273. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08855-6_27
Bahri, O., Ben Amor N., Talbi E.-G.: Optimization algorithms for multi-objective problems with fuzzy data. In: IEEE International Symposium on MCDM, pp. 194–201 (2014)
Binois, M., Ginsbourger, D., Roustant, O.: Quantifying uncertainty on Pareto fronts with Gaussian process conditional simulations. Eur. J. Oper. Res. 243(2), 386–394 (2015)
Basseur, M., Zitzler, E.: Handling uncertainty in indicator-based multiobjective optimization. Int. J. Comput. Intell. Res. 2(3), 255–272 (2006)
Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.): EMO 2005. LNCS, vol. 3410. Springer, Heidelberg (2005). https://doi.org/10.1007/b106458
Sánchez, L., Couso, I., Casillas, J.: A multiobjective genetic fuzzy system with imprecise probability fitness for vague data. In: IEEE International Symposium on Evolving Fuzzy Systems, pp. 131–136 (2006)
Goncalves, G., Hsu, T., Xu, J.: Vehicle routing problem with time windows and fuzzy demands: an approach based on the possibility theory. Int. J. Adv. Oper. Manage. 1(4), 312–330 (2009)
Deb, K., Gupta, H.: Searching for robust Pareto-optimal solutions in multi-objective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 150–164. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_11
Diwekar, U.: Optimization under uncertainty. Introduction to Applied Optimization. SOIA, vol. 22, pp. 1–54. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-76635-5_5
Fieldsend, J.E., Everson, R.M.: Multi-objective optimisation in the presence of uncertainty. In: IEEE CEC, vol. 1, pp. 243–250 (2005)
Goh, C.K., Tan, K.C.: Evolutionary multi-objective optimization in uncertain environments. J. Stud. Comput. Intell. 186, 5–18 (2009)
Hughes, E.J.: Evolutionary multi-objective ranking with uncertainty and noise. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 329–343. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9_23
Haubelt, C., Teich, J.: Accelerating design space exploration using Pareto-front arithmetics. In: ACM Conference on Asia and South Pacific Design Automation, pp. 525–531 (2003)
Hendriks, M., Geile, M., Basten, T.: Pareto analysis with uncertainty. In: 9th International Conference on EUC, pp. 189–196 (2011)
Köppen, M., Vicente-Garcia, R., Nickolay, B.: Fuzzy-Pareto-dominance and its application in evolutionary multi-objective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 399–412. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_28
Limbourg, P.: Multi-objective optimization of problems with epistemic uncertainty. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 413–427. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_29
Limbourg, P., Aponte, D.E.S.: An optimization algorithm for imprecise multi-objective problem functions. In: IEEE CEC, vol. 1, pp. 459–466 (2005)
Liefooghe, A.: Methodes pour l’optimisation multiobjectif: Approche cooperative, prise en compte de l’incertitude et application logistique. PHD thesis, Universit de Lille 1, pp. 13–20 (2009)
Liefooghe, A., Jourdan, L., Talbi, E.G.: Indicator-based approaches for multiobjective optimization in uncertain environments. In: 25th Mini-EURO Conference URPDM (2010)
Meng, Z., Shen, R., Jiang, M.: An objective penalty functions algorithm for multiobjective optimization problem. J. Oper. Res. 1(4), 229 (2011)
Petrone, G.: Optimization under Uncertainty: theory, algorithms and industrial applications. PHD thesis, Università degli Studi di Napoli Federico II, pp. 77–122 (2011)
Talbi, E.-G.: Metaheuristics: From design to implementation, vol. 74, pp. 309–373. John Wiley and Sons (2009)
Teich, J.: Pareto-front exploration with uncertain objectives. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 314–328. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9_22
Sahinidis, N.V.: Optimization under uncertainty: state-of-the-art and opportunities. J. Comput. Chem. Eng. 28(6), 971–983 (2004)
Saka, M.P., Dogan, E.: Recent developments in metaheuristic algorithms: a review. J. Comput. Technol. Rev. 5(4), 31–78 (2012)
Silva, R.C., Yamakami, A.: Definition of fuzzy Pareto-optimality by using possibility theory. In: IFSA/EUSFLAT Conference, pp. 1234–1239. Citeseer (2009)
Wang, G., Huawei, J.: Fuzzy-dominance and its application in evolutionary many objective optimization. In: IEEE International Conference on Computational Intelligence and Security Workshops CISW, pp. 195–198 (2007)
Zadeh, L.A.: Fuzzy sets. In: Fuzzy Sets, Fuzzy Logic and Fuzzy Systems: Selected Papers by Lotfi A. Zadeh, pp. 394–432 (1996)
Zhou, J., Yang, F., Wang, K.: Multi-objective optimization in uncertain random environments. J. Fuzzy Optim. Decis. Mak. 13(4), 397–413 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Bahri, O., Talbi, EG. (2018). Dealing with Epistemic Uncertainty in Multi-objective Optimization: A Survey. In: Medina, J., Ojeda-Aciego, M., Verdegay, J., Perfilieva, I., Bouchon-Meunier, B., Yager, R. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications. IPMU 2018. Communications in Computer and Information Science, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-91479-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-91479-4_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91478-7
Online ISBN: 978-3-319-91479-4
eBook Packages: Computer ScienceComputer Science (R0)