Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stance Evolution and Twitter Interactions in an Italian Political Debate

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10859))

  • 3060 Accesses

Abstract

The number of communications and messages generated by users on social media platforms has progressively increased in the last years. Therefore, the issue of developing automated systems for a deep analysis of users’ generated contents and interactions is becoming increasingly relevant. In particular, when we focus on the domain of online political debates, interest for the automatic classification of users’ stance towards a given entity, like a controversial topic or a politician, within a polarized debate is significantly growing. In this paper we propose a new model for stance detection in Twitter, where authors’ messages are not considered in isolation, but in a diachronic perspective for shedding light on users’ opinion shift dynamics along the temporal axis. Moreover, different types of social network community, based on retweet, quote, and reply relations were analyzed, in order to extract network-based features to be included in our stance detection model. The model has been trained and evaluated on a corpus of Italian tweets where users were discussing on a highly polarized debate in Italy, i.e. the 2016 referendum on the reform of the Italian Constitution. The development of a new annotated corpus for stance is described. Analysis and classification experiments show that network-based features help in detecting stance and confirm the importance of modeling stance in a diachronic perspective.

The work of the last author was partially funded by the Spanish MINECO under the research project SomEMBED (TIN2015-71147-C2-1-P).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The majority of the voters rejected the reform causing the resignation of Matteo Renzi, the Prime Minister that assumed full responsibility for the referendum defeat.

  2. 2.

    #constitutionalreferendum, #Ivoteyes, #Ivoteno.

  3. 3.

    http://www.crowdflower.com.

  4. 4.

    ConRef-STANCE-ita and code available at: https://github.com/mirkolai/Stance-Evolution-and-Twitter-Interactions.

  5. 5.

    https://en.wikipedia.org/wiki/Italian_constitutional_referendum,_2016.

References

  1. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 u.s. election: divided they blog. In: Proceedings of the 3rd International Workshop on Link Discovery, LinkKDD 2005, pp. 36–43. ACM, New York (2005)

    Google Scholar 

  2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 10, 10008 (2008). https://doi.org/10.1088/1742-5468/2008/10/P10008

  3. Bosco, C., Patti, V.: Social media analysis for monitoring political sentiment. In: Alhajj, R., Rokne, J. (eds.) ESNAM, pp. 1–13. Springer, New York (2017)

    Google Scholar 

  4. Krings, G., Karsai, M., Bernhardsson, S., Blondel, V.D., Saramäki, J.: Effects of time window size and placement on the structure of an aggregated communication network. EPJ Data Sci. 1(1), 4 (2012). https://doi.org/10.1140/epjds4

    Article  Google Scholar 

  5. Lai, M., Cignarella, A.T., Hernández Farías, D.I.: ITACOS at ibereval2017: detecting stance in Catalan and Spanish tweets. In: Proceedings of IberEval 2017, vol. 1881, pp. 185–192. CEUR-WS (2017)

    Google Scholar 

  6. Lai, M., Tambuscio, M., Patti, V., Ruffo, G., Rosso, P.: Extracting graph topological information and users’ opinion. In: Jones, G.J.F., Lawless, S., Gonzalo, J., Kelly, L., Goeuriot, L., Mandl, T., Cappellato, L., Ferro, N. (eds.) CLEF 2017. LNCS, vol. 10456, pp. 112–118. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65813-1_10

    Chapter  Google Scholar 

  7. Lazarsfeld, P.F., Merton, R.K.: Friendship as a social process: a substantive and methodological analysis. In: Berger, M., Abel, T., Page, C. (eds.) Freedom and Control in Modern Society, pp. 18–66. Van Nostrand, NY (1954)

    Google Scholar 

  8. Messina, E., Fersini, E., Zammit-Lucia, J.: All atwitter about Brexit: Lessons for the election campaigns. https://radix.org.uk/work/atwitter-brexit-lessons-election-campaigns (2017). Accessed 28 Jan 2018

  9. Mohammad, S., Kiritchenko, S., Sobhani, P., Zhu, X., Cherry, C.: Semeval-2016 task 6: detecting stance in tweets. In: Proceedings of SemEval-2016, pp. 31–41. ACL, San Diego (2016)

    Google Scholar 

  10. Mohammad, S.M., Sobhani, P., Kiritchenko, S.: Stance and sentiment in tweets. ACM TOIT 17(3), 26:1–26:23 (2017). https://doi.org/10.1145/3003433

    Article  Google Scholar 

  11. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008). https://doi.org/10.1561/1500000011

    Article  Google Scholar 

  12. Taulé, M., Martí, M.A., Rangel, F.M., Rosso, P., Bosco, C., Patti, V., et al.: Overview of the task on stance and gender detection in tweets on Catalan independence at IberEval 2017. In: Proceedings of IberEval 2017, vol. 1881, pp. 157–177. CEUR-WS (2017)

    Google Scholar 

  13. Theocharis, Y., Lowe, W.: Does Facebook increase political participation? evidence from a field experiment. Inf. Commun. Soc. 19(10), 1465–1486 (2016)

    Article  Google Scholar 

  14. Zarrella, G., Marsh, A.: Mitre at semeval-2016 task 6: transfer learning for stance detection. In: Proceedings of SemEval-2016, pp. 458–463. ACL, San Diego (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lai, M., Patti, V., Ruffo, G., Rosso, P. (2018). Stance Evolution and Twitter Interactions in an Italian Political Debate. In: Silberztein, M., Atigui, F., Kornyshova, E., Métais, E., Meziane, F. (eds) Natural Language Processing and Information Systems. NLDB 2018. Lecture Notes in Computer Science(), vol 10859. Springer, Cham. https://doi.org/10.1007/978-3-319-91947-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91947-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91946-1

  • Online ISBN: 978-3-319-91947-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics