Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Resource Creation for Training and Testing of Normalisation Systems for Konkani-English Code-Mixed Social Media Text

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10859))

Abstract

Code-Mixing is the mixing of two or more languages or language varieties in speech. Apart from the inherent linguistic complexity, the analysis of code-mixed content poses complex challenges owing to the presence of spelling variations and non-adherence to a formal grammar. However, for any downstream Natural Language Processing task, tools that are able to process and analyze code-mixed social media data are required. Currently there is a lack of publicly available resources for code-mixed Konkani-English social media data, while the amount of such text is increasing everyday. The lack of a standard dataset to evaluate these systems makes it difficult to make any meaningful comparisons of their relative accuracies.

In this paper, we describe the methodology for the creation of a normalisation dataset for Konkani-English Code-Mixed Social Media Text (CMST). We believe that this dataset will prove useful not only for the evaluation and training of normalisation systems but also help in the linguistic analysis of the process of normalisation Indian languages from native scripts to Roman. Normalisation refers to the process of writing the text of one language using the script of another language whereby the sound of the text is preserved as far as possible [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Indian Language Corpora Initiative corpus.

  2. 2.

    http://www.cs.cmu.edu/ark/.

  3. 3.

    https://github.com/irshadbhat/indic-trans.

  4. 4.

    http://www.lingo2word.com.

  5. 5.

    http://aspell.net/.

References

  1. Phadte, A., Thakkar, G.: Towards normalising Konkani-English code-mixed social media text. In: Proceedings of the 14th International Conference on Natural Language Processing (ICON-2017), pp. 85–94 (2017)

    Google Scholar 

  2. Gumperz, J.J.: ZIB Discourse Strategies. Cambridge University Press, Cambridge (1982)

    Book  Google Scholar 

  3. Knight, K., Graehl, J.: Machine Transliteration. Comput. Linguist. 24(4), 599–612 (1998)

    Google Scholar 

  4. Kunchukuttan, A. Puduppully, R. Bhattacharyya, P.: Brahmi-Net: a transliteration and script conversion system for languages of the Indian subcontinent. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, pp. 81–85 (2015)

    Google Scholar 

  5. Hidayat, T.: An analysis of code switching used by facebookers (a case study in a social network site). Sekolah Tinggi Keguruan dan Ilmu Pendidikan (STKIP) Siliwangi Bandung (2012)

    Google Scholar 

  6. Barman, U., Das, A., Wagner, J., Foster, J.: Code mixing: a challenge for language identification in the language of social media. In: EMNLP 2014, p. 13 (2014)

    Google Scholar 

  7. Han, B., Baldwin, T.: Lexical normalisation of short text messages: Makn sens a# twitter. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 368–378. Association for Computational Linguistics (2011)

    Google Scholar 

  8. Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., et al.: Moses: open source toolkit for statistical machine translation. In: Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, pp. 177–180. Association for Computational Linguistics (2007)

    Google Scholar 

  9. Federico, M., Bertoldi, N., Cettolo, M.: IRSTLM: an open source toolkit for handling large scale language models. In: Interspeech, pp. 1618–1621 (2008)

    Google Scholar 

  10. Kneser, R., Ney, H.: Improved backing-off for m-gram language modeling. In: 1995 International Conference on Acoustics, Speech, and Signal Processing, ICASSP-1995, vol. 1, pp. 181–184. IEEE (1995)

    Google Scholar 

  11. Sharma, A., Gupta, S., Motlani, R., Bansal, P., Srivastava, M., Mamidi, R., Sharma, D.M.: Shallow parsing pipeline for Hindi-English code-mixed social media text (2016)

    Google Scholar 

  12. Vyas, Y., Gella, S., Sharma, J., Bali, K., Choudhury, M.: Pos tagging of English-Hindi code-mixed social media content. In: EMNLP, vol. 14, PP. 974–979 (2014)

    Google Scholar 

  13. Wong, K.-F., Xia, Y.: Normalization of Chinese chat language. Lang. Resour. Eval. 42(2), 219–242 (2008)

    Article  Google Scholar 

  14. Gupta, K., Choudhury, M., Bali, K.: Mining Hindi-English transliteration pairs from online Hindi lyrics. In: LREC, pp. 2459–2465 (2012)

    Google Scholar 

  15. Choudhury, M., Bali, K., Dasgupta, T., Basu, A.: Resource creation for training and testing of transliteration systems for Indian languages. In: LREC (2010)

    Google Scholar 

  16. Paul Cook and Suzanne Stevenson.: An unsupervised model for text message normalization. In: Proceedings of the Workshop on Computational Approaches to Linguistic Creativity, pp. 71–78. Association for Computational Linguistics (2009)

    Google Scholar 

  17. Xue, Z., Yin, D., Davison, B.D.: Normalizing microtext. In: Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelligence (2011)

    Google Scholar 

  18. Gella, S., Sharma, J., Bali, K.: Query word labeling and back transliteration for Indian languages: shared task system description. In: FIRE Working Notes (2013)

    Google Scholar 

  19. Owoputi, O., O’Connor, B., Dyer, C., Gimpel, K., Schneider, N., Smith, N.A.: Improved part-of-speech tagging for online conversational text with word clusters. In: Association for Computational Linguistics (2013)

    Google Scholar 

  20. Mayzner, M.S., Tresselt, M.E.: Tables of single-letter and digram frequency counts for various word-length and letter-position combinations. Psychonomic monograph supplements (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshata Phadte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Phadte, A. (2018). Resource Creation for Training and Testing of Normalisation Systems for Konkani-English Code-Mixed Social Media Text. In: Silberztein, M., Atigui, F., Kornyshova, E., Métais, E., Meziane, F. (eds) Natural Language Processing and Information Systems. NLDB 2018. Lecture Notes in Computer Science(), vol 10859. Springer, Cham. https://doi.org/10.1007/978-3-319-91947-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91947-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91946-1

  • Online ISBN: 978-3-319-91947-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics