Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

TSAUB: A Temporal-Sentiment-Aware User Behavior Model for Personalized Recommendation

  • Conference paper
  • First Online:
Databases Theory and Applications (ADC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10837))

Included in the following conference series:

Abstract

Personalized recommender system has become an essential means to help people discover attractive and interesting items. We find that to buy an item, a user is influenced not only by her intrinsic interests and temporal contexts, but also by the crowd sentiment to this item. Users tend to refuse to accept the recommended items whose most reviews are negative. In light of this, we propose a temporal-sentiment-aware user behavior model (TSAUB) to learn personal interests, temporal contexts (i.e., temporal preferences of the public) and crowd sentiment from user review data. Based on the learnt knowledge from TSAUB, we design a temporal-sentiment-aware recommender system. To improve the training efficiency of TSAUB, we develop a distributed learning algorithm for model parameter estimation using the Spark framework. Extensive experiments have been performed on four Amazon datasets, and the results show that our recommender system significantly outperforms the state-of-the-arts by making more effective and efficient recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use “behaviors” to refer to a broad range of user actions such as purchases, clicks and writing reviews.

References

  1. Bi, B., Tian, Y., Sismanis, Y., Balmin, A., Cho, J.: Scalable topic-specific influence analysis on microblogs. In: WSDM, pp. 513–522 (2014)

    Google Scholar 

  2. Chen, W.Y., Chu, J.C., Luan, J., Bai, H., Wang, Y., Chang, E.Y.: Collaborative filtering for orkut communities: discovery of user latent behavior. In: WWW, pp. 681–690 (2009)

    Google Scholar 

  3. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n recommendation tasks. In: RecSys, pp. 39–46 (2010)

    Google Scholar 

  4. García-Cumbreras, M.Á., Montejo-Ráez, A., Díaz-Galiano, M.C.: Pessimists and optimists: improving collaborative filtering through sentiment analysis. Expert Syst. Appl. 40(17), 6758–6765 (2013)

    Article  Google Scholar 

  5. Herr, P.M., Kardes, F.R., Kim, J.: Effects of word-of-mouth and product-attribute information on persuasion: an accessibility-diagnosticity perspective. J. Consum. Res. 17(4), 454–462 (1991)

    Article  Google Scholar 

  6. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: KDD, pp. 426–434 (2008)

    Google Scholar 

  7. Koren, Y.: Collaborative filtering with temporal dynamics. Commun. ACM 53(4), 89–97 (2010)

    Article  Google Scholar 

  8. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: WWW, pp. 661–670 (2010)

    Google Scholar 

  9. McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rating dimensions with review text. In: RecSys, pp. 165–172 (2013)

    Google Scholar 

  10. Pappas, N., Popescu-Belis, A.: Sentiment analysis of user comments for one-class collaborative filtering over ted talks. In: SIGIR, pp. 773–776 (2013)

    Google Scholar 

  11. Pero, Š., Horváth, T.: Opinion-driven matrix factorization for rating prediction. In: Carberry, S., Weibelzahl, S., Micarelli, A., Semeraro, G. (eds.) UMAP 2013. LNCS, vol. 7899, pp. 1–13. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38844-6_1

    Chapter  Google Scholar 

  12. Rendle, S.: Factorization machines. In: ICDM, pp. 995–1000 (2010)

    Google Scholar 

  13. Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P.: The author-topic model for authors and documents. In: UAI, pp. 487–494 (2004)

    Google Scholar 

  14. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW, pp. 285–295 (2001)

    Google Scholar 

  15. Singh, V.K., Mukherjee, M., Mehta, G.K.: Combining collaborative filtering and sentiment classification for improved movie recommendations. In: Sombattheera, C., Agarwal, A., Udgata, S.K., Lavangnananda, K. (eds.) MIWAI 2011. LNCS (LNAI), vol. 7080, pp. 38–50. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25725-4_4

    Chapter  Google Scholar 

  16. Stoyanovich, J., Amer-Yahia, S., Marlow, C., Yu, C.: Leveraging tagging to model user interests in del. icio. us. In: AAAI, pp. 104–109 (2008)

    Google Scholar 

  17. Tang, J., Wu, S., Sun, J., Su, H.: Cross-domain collaboration recommendation. In: KDD, pp. 1285–1293 (2012)

    Google Scholar 

  18. Xie, M., Yin, H., Wang, H., Xu, F., Chen, W., Wang, S.: Learning graph-based poi embedding for location-based recommendation. In: CIKM, pp. 15–24 (2016)

    Google Scholar 

  19. Xiong, L., Chen, X., Huang, T.K., Schneider, J.G., Carbonell, J.G.: Temporal collaborative filtering with bayesian probabilistic tensor factorization. In: SDM, pp. 211–222 (2010)

    Chapter  Google Scholar 

  20. Xu, Z., Zhang, Y., Wu, Y., Yang, Q.: Modeling user posting behavior on social media. In: SIGIR, pp. 545–554 (2012)

    Google Scholar 

  21. Yin, H., Cui, B., Chen, L., Hu, Z., Zhang, C.: Modeling location-based user rating profiles for personalized recommendation. TKDE 9(3), 19 (2015)

    Google Scholar 

  22. Yin, H., Cui, B., Chen, L., Hu, Z., Zhou, X.: Dynamic user modeling in social media systems. TOIS 33(3), 10 (2015)

    Article  Google Scholar 

  23. Yin, H., Cui, B., Lu, H., Huang, Y., Yao, J.: A unified model for stable and temporal topic detection from social media data. In: ICDE, pp. 661–672 (2013)

    Google Scholar 

  24. Yin, H., Cui, B., Zhou, X., Wang, W., Huang, Z., Sadiq, S.: Joint modeling of user check-in behaviors for real-time point-of-interest recommendation. TOIS 35(2), 11 (2016)

    Article  Google Scholar 

  25. Yin, H., Sun, Y., Cui, B., Hu, Z., Chen, L.: LCARS: a location-content-aware recommender system. In: KDD, pp. 221–229 (2013)

    Google Scholar 

  26. Yin, H., Wang, W., Wang, H., Chen, L., Zhou, X.: Spatial-aware hierarchical collaborative deep learning for poi recommendation. TKDE 29(11), 2537–2551 (2017)

    Google Scholar 

  27. Yin, H., Zhou, X., Cui, B., Wang, H., Zheng, K., Nguyen, Q.V.H.: Adapting to user interest drift for poi recommendation. TKDE 28(10), 2566–2581 (2016)

    Google Scholar 

  28. Yin, H., Zhou, X., Shao, Y., Wang, H., Sadiq, S.: Joint modeling of user check-in behaviors for point-of-interest recommendation. In: CIKM, pp. 1631–1640 (2015)

    Google Scholar 

  29. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: NSDI, p. 2 (2012)

    Google Scholar 

  30. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: HotCloud, p. 10 (2010)

    Google Scholar 

  31. Zhang, Y., Lai, G., Zhang, M., Zhang, Y., Liu, Y., Ma, S.: Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In: SIGIR, pp. 83–92 (2014)

    Google Scholar 

Download references

Acknolwledgement

This work was supported by ARC Discovery Early Career Researcher Award (Grant No. DE160100308), ARC Discovery Project (Grant No. DP170103954) and New Staff Research Grant of The University of Queensland (Grant No.613134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Q., Yin, H., Wang, H., Huang, Z. (2018). TSAUB: A Temporal-Sentiment-Aware User Behavior Model for Personalized Recommendation. In: Wang, J., Cong, G., Chen, J., Qi, J. (eds) Databases Theory and Applications. ADC 2018. Lecture Notes in Computer Science(), vol 10837. Springer, Cham. https://doi.org/10.1007/978-3-319-92013-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92013-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92012-2

  • Online ISBN: 978-3-319-92013-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics