Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Comparative Study of Conventional and Deep Learning Target Tracking Algorithms for Low Quality Videos

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2018 (ISNN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10878))

Included in the following conference series:

Abstract

This paper presents a comparative study of several state-of-the-art target tracking algorithms, including conventional and deep learning ones, for low quality videos. A challenge video data set known as SENSIAC, which contains both optical and infrared videos at long ranges (1000 m–5000 m), was used in our investigations. It was found that none of the trackers can perform well under all conditions. It appears that the field of video tracking still needs some serious development in order to reach maturity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao, Z., Chen, H., Chen, G., Kwan, C., Li, X.: Comparison of several ballistic target tracking filters. In: Proceedings of American Control Conference, pp. 2197–2202 (2006)

    Google Scholar 

  2. Zhao, Z., Chen, H., Chen, G., Kwan, C., Li, X.: IMM-LMMSE filtering algorithm for ballistic target tracking with unknown ballistic coefficient. In: Proceedings of SPIE, Signal and Data Processing of Small Targets, vol. 6236 (2006)

    Google Scholar 

  3. Dao, M., Kwan, C., Koperski, K., Marchisio, G.: A joint sparsity approach to tunnel activity monitoring using high resolution satellite images. In: IEEE Ubiquitous Computing, Electronics & Mobile Communication Conference, pp. 322–328 (2017)

    Google Scholar 

  4. Perez, D., Banerjee, D., Kwan, C., Dao, M., Shen, Y., Koperski, K., Marchisio, G., Li, J.: Deep learning for effective detection of excavated soil related to illegal tunnel activities. In: IEEE Ubiquitous Computing, Electronics & Mobile Communication Conference, pp. 626–632 (2017)

    Google Scholar 

  5. Qu, Y., Qi, H., Ayhan, B., Kwan, C., Kidd, R.: Does multispectral/hyperspectral pansharpening improve the performance of anomaly detection? IEEE International Geoscience and Remote Sensing Symposium, pp. 6130–6133 (2017)

    Google Scholar 

  6. Zhou, J., Kwan, C., Ayhan, B.: Improved target detection for hyperspectral images using hybrid in-scene calibration. J. Appl. Remote Sens. 11(3), 035010 (2017)

    Article  Google Scholar 

  7. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-Learning-Detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)

    Article  Google Scholar 

  8. Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2259–2272 (2011)

    Article  MathSciNet  Google Scholar 

  9. Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_62

    Chapter  Google Scholar 

  10. Ma, C., Huang, J.B., Yang, X., Yang, M.H.: Hierarchical convolutional features for visual tracking. In: Computer Vision (ICCV) (2015)

    Google Scholar 

  11. Li, X., Kwan, C., Mei, G., Li, B.: A generic approach to object matching and tracking. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2006. LNCS, vol. 4141, pp. 839–849. Springer, Heidelberg (2006). https://doi.org/10.1007/11867586_76

    Chapter  Google Scholar 

  12. SENSIAC. https://www.sensiac.org/external/products/list_databases.jsf

  13. Lewis, F.L.: Optimal Estimation. Wiley, Hoboken (1986)

    Google Scholar 

  14. Zhou, J., Kwan, C.: Tracking of multiple pixel targets using multiple cameras. In: 15th International Symposium on Neural Networks (2018)

    Google Scholar 

  15. Kwan, C., Lewis, F.L.: A note on kalman filtering. IEEE Trans. Educ. 42(3), 225–227 (1999)

    Article  Google Scholar 

  16. Bertinetto, L., et al.: Staple: complementary learners for real-time tracking. In: Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  17. Ma, C., Yang, X., Zhang, C., Yang, M.H.: Long-term correlation tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, pp. 5388–5396 (2015)

    Google Scholar 

Download references

Acknowledgments

This research was supported by US Air Force under contract FA8651-17-C-0017. The views, opinions and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiman Kwan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kwan, C., Chou, B., Kwan, LY.M. (2018). A Comparative Study of Conventional and Deep Learning Target Tracking Algorithms for Low Quality Videos. In: Huang, T., Lv, J., Sun, C., Tuzikov, A. (eds) Advances in Neural Networks – ISNN 2018. ISNN 2018. Lecture Notes in Computer Science(), vol 10878. Springer, Cham. https://doi.org/10.1007/978-3-319-92537-0_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92537-0_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92536-3

  • Online ISBN: 978-3-319-92537-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics