Abstract
In the anesthesia field there are some challenges, such as achieving new methods to control, and, of course, for reducing the pain suffered for the patients during surgeries. The first steps in this field were focused on obtaining representative measurements for pain measurement. Nowadays, one of the most promiser index is the ANI (Antinociception Index). This research works deals the model for the remifentanil dose prediction for patients undergoing general anesthesia. To do that, a hybrid model based on intelligent techniques is implemented. The model was trained using Support Vector Regression (SVR) and Artificial Neural Networks (ANN) algorithms. Results were validated with a real dataset of patients. It was possible to check the really successful model performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chang, J.J., Syafiie, S., Kamil, R., Lim, T.A.: Automation of anaesthesia: a review on multivariable control. J. Clin. Monit. Comput. 29(2), 231–239 (2015)
Mendez, J.A., Marrero, A., Reboso, J.A., Leon, A.: Adaptive fuzzy predictive controller for anesthesia delivery. Control Eng. Pract. 46, 1–9 (2016)
Marrero, A., Méndez, J.A., Reboso, J.A., Martín, I., Calvo, J.L.: Adaptive fuzzy modeling of the hypnotic process in anesthesia. J. Clin. Monit. Comput. 31(2), 319–330 (2017)
Casteleiro-Roca, J., Calvo-Rolle, J., Meizoso-Lopez, M., Piñon-Pazos, A., Rodriguez-Gómez, B.: New approach for the QCM sensors characterization. Sens. Actuators, A 207, 1–9 (2014)
Crespo-Ramos, M.J., Machón-González, I., López-García, H., Calvo-Rolle, J.L.: Detection of locally relevant variables using SOM-NG algorithm. Eng. Appl. Artif. Intell. 26(8), 1992–2000 (2013)
Cowen, R., Stasiowska, M.K., Laycock, H., Bantel, C.: Assessing pain objectively: the use of physiological markers. Anaesthesia 70(7), 828–847 (2015)
Ledowski, T.: Analgesia-nociception index. Br. J. Anaesth. 112(5), 937 (2014)
Jeanne, M., Clément, C., De Jonckheere, J., Logier, R., Tavernier, B.: Variations of the analgesia nociception index during general anaesthesia for laparoscopic abdominal surgery. J. Clin. Monit. Comput. 26(4), 289–294 (2012)
Jove, E., Gonzalez-Cava, J.M., Casteleiro-Roca, J.L., Pérez, J.A.M., Calvo-Rolle, J.L., de Cos Juez, F.J.: An intelligent model to predict ANI in patients undergoing general anesthesia. In: Pérez García, H., Alfonso-Cendón, J., Sánchez González, L., Quintián, H., Corchado, E. (eds.) SOCO/CISIS/ICEUTE -2017. AISC, vol. 649, pp. 492–501. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67180-2_48
Casteleiro-Roca, J.L., Pérez, J.A.M., Piñón-Pazos, A.J., Calvo-Rolle, J.L., Corchado, E.: Modeling the electromyogram (EMG) of patients undergoing anesthesia during surgery. In: Herrero, Á., Sedano, J., Baruque, B., Quintián, H., Corchado, E. (eds.) 10th International Conference on Soft Computing Models in Industrial and Environmental Applications. AISC, vol. 368, pp. 273–283. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19719-7_24
Gonzalez-Cava, J.M., Reboso, J.A., Casteleiro-Roca, J.L., Calvo-Rolle, J.L., Méndez Pérez, J.A.: A novel fuzzy algorithm to introduce new variables in the drug supply decision-making process in medicine. In: Complexity 2018 (2018)
Ghanghermeh, A., Roshan, G., Orosa, J.A., Calvo-Rolle, J.L., Costa, A.M.: New climatic indicators for improving urban sprawl: a case study of Tehran city. Entropy 15(3), 999–1013 (2013)
Calvo-Rolle, J.L., Quintian-Pardo, H., Corchado, E., del Carmen Meizoso-López, M., García, R.F.: Simplified method based on an intelligent model to obtain the extinction angle of the current for a single-phase half wave controlled rectifier with resistive and inductive load. J. Appl. Logic 13(1), 37–47 (2015)
Calvo-Rolle, J.L., Fontenla-Romero, O., Pérez-Sánchez, B., Guijarro-Berdinas, B.: Adaptive inverse control using an online learning algorithm for neural networks. Informatica 25(3), 401–414 (2014)
Casteleiro-Roca, J.L., Calvo-Rolle, J.L., Meizoso-López, M.C., Piñón-Pazos, A., Rodríguez-Gómez, B.A.: Bio-inspired model of ground temperature behavior on the horizontal geothermal exchanger of an installation based on a heat pump. Neurocomputing 150, 90–98 (2015)
Machón-González, I., López-García, H., Calvo-Rolle, J.L.: A hybrid batch SOM-NG algorithm. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–5. IEEE (2010)
Alaiz Moretón, H., Calvo Rolle, J., García, I., Alonso Alvarez, A.: Formalization and practical implementation of a conceptual model for PID controller tuning. Asian J. Control 13(6), 773–784 (2011)
Rolle, J., Gonzalez, I., Garcia, H.: Neuro-robust controller for non-linear systems. DYNA 86(3), 308–317 (2011)
Jove, E., Aláiz-Moretón, H., Casteleiro-Roca, J.L., Corchado, E., Calvo-Rolle, J.L.: Modeling of bicomponent mixing system used in the manufacture of wind generator blades. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 275–285. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10840-7_34
Casteleiro-Roca, J.L., Jove, E., Sánchez-Lasheras, F., Méndez-Pérez, J.A., Calvo-Rolle, J.L., de Cos Juez, F.J.: Power cell SOC modelling for intelligent virtual sensor implementation. J. Sens. 2017, 10 (2017)
Casteleiro-Roca, J.L., Calvo-Rolle, J.L., Méndez Pérez, J.A., Roqueñí Gutiérrez, N., de Cos Juez, F.J.: Hybrid intelligent system to perform fault detection on BIS sensor during surgeries. Sensors 17(1), 179 (2017)
Gonzalez-Cava, J.M., et al.: A machine learning based system for analgesic drug delivery. In: Pérez García, H., Alfonso-Cendón, J., Sánchez González, L., Quintián, H., Corchado, E. (eds.) SOCO/CISIS/ICEUTE -2017. AISC, vol. 649, pp. 461–470. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67180-2_45
García, R.F., Rolle, J.L.C., Gomez, M.R., Catoira, A.D.: Expert condition monitoring on hydrostatic self-levitating bearings. Expert Syst. Appl. 40(8), 2975–2984 (2013)
Calvo-Rolle, J.L., Casteleiro-Roca, J.L., Quintián, H., del Carmen Meizoso-Lopez, M.: A hybrid intelligent system for PID controller using in a steel rolling process. Expert Syst. Appl. 40(13), 5188–5196 (2013)
García, R.F., Rolle, J.L.C., Castelo, J.P., Gomez, M.R.: On the monitoring task of solar thermal fluid transfer systems using NN based models and rule based techniques. Eng. Appl. Artif. Intell. 27, 129–136 (2014)
Quintián, H., Calvo-Rolle, J.L., Corchado, E.: A hybrid regression system based on local models for solar energy prediction. Informatica 25(2), 265–282 (2014)
Quintian Pardo, H., Calvo Rolle, J.L., Fontenla Romero, O.: Application of a low cost commercial robot in tasks of tracking of objects. DYNA 79(175), 24–33 (2012)
Wasserman, P.: Advanced Methods in Neural Computing, 1st edn. Wiley, New York (1993)
Zeng, Z., Wang, J.: Advances in Neural Network Research and Applications, 1st edn. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12990-2
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995). https://doi.org/10.1007/978-1-4757-3264-1
Kaski, S., Sinkkonen, J., Klami, A.: Discriminative clustering. Neurocomputing 69(1–3), 18–41 (2005)
Fernández-Serantes, L.A., Estrada Vázquez, R., Casteleiro-Roca, J.L., Calvo-Rolle, J.L., Corchado, E.: Hybrid intelligent model to predict the SOC of a LFP power cell type. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS (LNAI), vol. 8480, pp. 561–572. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07617-1_49
Li, Y., Shao, X., Cai, W.: A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples. Talanta 72(1), 217–222 (2007)
Casteleiro-Roca, J.L., Quintián, H., Calvo-Rolle, J.L., Corchado, E., del Carmen Meizoso-López, M., Piñón-Pazos, A.: An intelligent fault detection system for a heat pump installation based on a geothermal heat exchanger. J. Appl. Logic 17, 36–47 (2016)
Acknowledgments
Jose M. Gonzalez-Cava’s research was supported by the Spanish Ministry of Education, Culture and Sport (www.mecd.gob.es), under the “Formación de Profesorado” grant FPU15/03347.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Jove, E. et al. (2018). Remifentanil Dose Prediction for Patients During General Anesthesia. In: de Cos Juez, F., et al. Hybrid Artificial Intelligent Systems. HAIS 2018. Lecture Notes in Computer Science(), vol 10870. Springer, Cham. https://doi.org/10.1007/978-3-319-92639-1_45
Download citation
DOI: https://doi.org/10.1007/978-3-319-92639-1_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-92638-4
Online ISBN: 978-3-319-92639-1
eBook Packages: Computer ScienceComputer Science (R0)