Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Computational Model of Multi-scale Spatiotemporal Attention in Video Data

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10882))

Included in the following conference series:

  • 5072 Accesses

Abstract

This paper describes a spatiotemporal saliency-based attention model in applications for the rapid and robust detection of objects of interest in video data. It is based on the analysis of feature-point areas, which correspond to the object-relevant focus-of-attention (FoA) points extracted by the proposed multi-scale spatiotemporal operator. The operator design is inspired by three cognitive properties of the human visual system: detection of spatial saliency, perceptual feature grouping, and motion detection. The model includes attentive learning mechanisms for object representation in the form of feature-point descriptor sets. The preliminary test results of attention focusing for the detection of feature-point areas have confirmed the advantage of the proposed computational model in terms of its robustness and localization accuracy over similar existing detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cristóbal, G., Perrinet, L., Keil, M.S. (eds.): Biologically Inspired Computer Vision: Fundamentals and Applications, 458 p. (2015)

    Google Scholar 

  2. Frintrop, S., et al.: Computational visual attention systems and their cognitive foundation: a survey. ACM Trans. Appl. Percept. 7(1), 1–46 (2010)

    Article  Google Scholar 

  3. Feichtenhofer, C., Pinz, A., Wildes, R.: Dynamic scene recognition with complementary spatiotemporal features. IEEE Trans. PAMI 38(12), 2389–2401 (2016)

    Article  Google Scholar 

  4. Bregonzio, M., Gong, S., Xiang, T.: Recognizing action as clouds of space-time interest points. In: Proceedings of the CVPR, pp. 1948–1955 (2009)

    Google Scholar 

  5. Felzenszwalb, P.F., et al.: Object detection with discriminatively trained part-based models. IEEE Trans. PAMI 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  6. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. PAMI 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  7. Kadir, T., Brady, M.: Saliency, scale and image description. Int. J. Comput. Vis. 45(2), 83–105 (2001)

    Article  Google Scholar 

  8. Bruce, N.B., Tsotsos, J.K.: Saliency, attention, and visual search: an information theoretic approach. J. Vis. 9(3), 1–24 (2009)

    Article  Google Scholar 

  9. Itti, L., Baldi, P.: A principled approach to detecting surprising events in video. In: IEEE Conference Computer Vision and Pattern Recognition, pp. 631–637 (2005)

    Google Scholar 

  10. Mahadevan, V., Vasconcelos, N.: Spatiotemporal saliency in highly dynamic scenes. IEEE Trans. PAMI 32(1), 171–177 (2010)

    Article  Google Scholar 

  11. Adelson, E.H., Bergen, J.R.: Spatiotemporal energy models for the perception of motion. Opt. Soc. Am. 2, 284–299 (1985)

    Article  Google Scholar 

  12. Palenichka, R., et al.: A spatiotemporal attention operator using isotropic contrast and regional homogeneity. J. Electron. Imaging 20(2), 1–15 (2011)

    Article  Google Scholar 

  13. Shabani, A., Clausi, D., Zelek, J.S.: Evaluation of local spatiotemporal salient feature detectors for human action recognition. In: Proceedings of the CRV 2012, pp. 468–475 (2012)

    Google Scholar 

  14. Laptev, I.: On space-time interest points. Int. J. Comp. Vis. 64(2/3), 107–123 (2005)

    Article  Google Scholar 

  15. Harris, C., Stephens, M.J.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  16. Lindeberg, T.: Generalized Gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatiotemporal scale-space. J. Math. Imaging Vis. 40(1), 36–81 (2011)

    Article  MathSciNet  Google Scholar 

  17. Willems, G., Tuytelaars, T., Van Gool, L.: An efficient dense and scale-invariant spatio-temporal interest point detector. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 650–663. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4_48

    Chapter  Google Scholar 

  18. Lindeberg, T.: Feature detection with automatic scale selection. IJCV 30(2), 79–116 (1998)

    Article  Google Scholar 

  19. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatiotemporal features. In: Proceedings of the VS-PETS, pp. 65–72 (2005)

    Google Scholar 

  20. Treisman, A., Gelade, G.: A feature integration theory of attention. Cogn. Psychol. 12, 97–136 (1980)

    Article  Google Scholar 

  21. Erhan, D., et al.: Scalable object detection using deep neural networks. In: Proceedings of the CVPR, pp. 2147–2154 (2014)

    Google Scholar 

  22. Curtis, P., Harb, M., Abielmona, R., Petriu, E.: Feature selection and neural network architecture evaluation for real-time video object classification. In: IEEE CEC, pp. 1038–1045 (2016)

    Google Scholar 

  23. Lindeberg, T.: Spatio-temporal scale selection in video data. J. Math. Imaging Vis., 1–38 (2017)

    Google Scholar 

  24. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  25. McLachlan, G.J.: Discriminant Analysis and Statistical Pattern Recognition. Wiley Interscience, Hoboken (2004)

    MATH  Google Scholar 

  26. Palenichka, R., et al.: Model-based extraction of image area descriptors using a multi-scale attention operator. In: ICPR, Tokyo, pp. 853–856 (2012)

    Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the financial support of the Ontario Centers of Excellence (OCE) and the National Sciences and Engineering Research Council of Canada (NSERC) towards the project “Big Data Analytics for the Maritime Internet of Things”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Palenichka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Palenichka, R., Falcon, R., Abielmona, R., Petriu, E. (2018). A Computational Model of Multi-scale Spatiotemporal Attention in Video Data. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93000-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92999-6

  • Online ISBN: 978-3-319-93000-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics