Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Describing Scenarios and Architectures for Time-Aware Recommender Systems for Learning

  • Conference paper
  • First Online:
Enterprise Information Systems (ICEIS 2017)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 321))

Included in the following conference series:

  • 863 Accesses

Abstract

This work investigates the use of Time-Aware Recommender Systems in e-learning systems. In this sense, in the work are defined recommender systems architectures taking into account how the time can be used in recommender systems in the learning domain. For each architecture the main requirements to use the time in a specific way is identified, and some algorithm ideas area presented. Scenarios are presented to illustrate how the proposal architectures can be useful. The results of this work can guide other researches on the field to apply recommender systems techniques in the learning domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.merriam-webster.com/dictionary/time.

  2. 2.

    http://mahout.apache.org/.

References

  1. Brusilovsky, P.: Methods and Techniques of Adaptive Hypermedia. In: Brusilovsky, P., Kobsa, A., Vassileva, J. (eds.) Adaptive Hypertext and Hypermedia, pp. 1–43. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-017-0617-9_1

    Chapter  Google Scholar 

  2. Campos, P.G., Díez, F., Cantador, I.: Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols. User Model User-Adapt. Interact. 24, 67–119 (2014)

    Article  Google Scholar 

  3. de Borba, E.J., Gasparini, I., Lichtnow, D.: Time-aware recommender systems: a systematic mapping. In: Kurosu, M. (ed.) HCI 2017. LNCS, vol. 10272, pp. 464–479. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58077-7_38

    Chapter  Google Scholar 

  4. Borba, E.J., Gasparini, I., Lichtnow, D.: The use of time dimension in recommender systems for learning. ICEIS 2, 600–609 (2017)

    Google Scholar 

  5. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 1–35. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_1

    Chapter  MATH  Google Scholar 

  6. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

    Article  Google Scholar 

  7. Beel, J., Breitinger, C., Langer, S., Lommatzsch, A., Gipp, B.: Towards reproducibility in recommender-systems research. User Model. User-Adapt. Interact. 26, 69–101 (2016)

    Article  Google Scholar 

  8. Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, Paul B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_3

    Chapter  Google Scholar 

  9. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction. Cambridge University Press, New York (2011)

    Google Scholar 

  10. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: Developing constraint-based recommenders. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 187–215. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_6

    Chapter  Google Scholar 

  11. Burke, R.D.: Hybrid recommender systems: survey and experiments. User Model. User-Adapt. Interact. 12(4), 331–370 (2002)

    Article  Google Scholar 

  12. Dey, A.K.: Understanding and using context. Ubiquitous Comput. 5(1), 4–7 (2001)

    Article  Google Scholar 

  13. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: Proceedings of the First Workshop Mobile Computing Systems and Applications (WMCSA 1994), pp. 85–90 (1994)

    Google Scholar 

  14. Chen, G., Kotz, D.: A Survey of Context-Aware Mobile Computing Research. Technical report (2000)

    Google Scholar 

  15. Zimmermann, A., Lorenz, A., Oppermann, R.: An operational definition of context. In: Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu, L. (eds.) CONTEXT 2007. LNCS (LNAI), vol. 4635, pp. 558–571. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74255-5_42

    Chapter  Google Scholar 

  16. Schmidt, A., Beigl, M., Gellersen, G.H.: There is more to context than location. Comput. Gr. 23(6), 893–901 (1999)

    Article  Google Scholar 

  17. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217–253. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_7

    Chapter  MATH  Google Scholar 

  18. Verbert, K., Manouselis, N., Ochoa, X., Wolpers, M., Drachsler, H., Bosnic, I., Duval, E.: Context-aware recommender systems for learning: a survey and future challenges. IEEE Trans. Learn. Technol. 5(4), 318–335 (2012)

    Article  Google Scholar 

  19. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software engineering. In: 12th International Conference on Evaluation and Assessment in Software Engineering, vol. 17, no. 1 (2008)

    Google Scholar 

  20. Anacleto, R., Figueiredo, L., Almeida, A., Novais, P.: Mobile application to provide personalized sightseeing tours. J. Netw. Comput. Appl. 41, 56–64 (2014)

    Article  Google Scholar 

  21. Kurihara, S., Moriyama, K., Numao, M.: Context-aware application prediction and recommendation in mobile devices. In: Web Intelligence, pp. 494–500 (2013)

    Google Scholar 

  22. Vo, C., Torabi, T., Loke, S.: Towards context-aware task recommendation. In: Joint Conferences on Pervasive Computing (JCPC), pp. 289–292 (2009)

    Google Scholar 

  23. Wei, C., Khoury, R., Fong, S.: Web 2.0 recommendation service by multi-collaborative filtering trust network algorithm. Inf. Syst. Front. 15(4), 533–551 (2013)

    Article  Google Scholar 

  24. Vildjiounaite, E., Kyllönen, V., Hannula, T., Alahuhta, P.: Unobtrusive dynamic modelling of TV program preferences in a household. In: Tscheligi, M., Obrist, M., Lugmayr, A. (eds.) EuroITV 2008. LNCS, vol. 5066, pp. 82–91. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69478-6_9

    Chapter  Google Scholar 

  25. Montes-García, A., Álvarez-Rodríguez, J., Labra-Gayo, J., Martínez-Merino, M.: Towards a journalist-based news recommendation system: the Wesomender approach. Expert Syst. Appl. 40(17), 6735–6741 (2013)

    Article  Google Scholar 

  26. Zhang, Z., Liu, H.: Social recommendation model combining trust propagation and sequential behaviors. Appl. Intell. 43(3), 695–706 (2015)

    Article  Google Scholar 

  27. IEEE: Draft Standard for Learning Object Metadata (2002). http://grouper.ieee.org/groups/ltsc/wg12/20020612-Final-LOM-Draft.html

  28. Bell, T.: Extensive reading speed and comprehension. Read. Matrix 1(1), 1–13 (2001)

    MathSciNet  Google Scholar 

  29. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eduardo José de Borba , Isabela Gasparini or Daniel Lichtnow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Borba, E.J., Gasparini, I., Lichtnow, D. (2018). Describing Scenarios and Architectures for Time-Aware Recommender Systems for Learning. In: Hammoudi, S., Śmiałek, M., Camp, O., Filipe, J. (eds) Enterprise Information Systems. ICEIS 2017. Lecture Notes in Business Information Processing, vol 321. Springer, Cham. https://doi.org/10.1007/978-3-319-93375-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93375-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93374-0

  • Online ISBN: 978-3-319-93375-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics