Abstract
This work investigates the use of Time-Aware Recommender Systems in e-learning systems. In this sense, in the work are defined recommender systems architectures taking into account how the time can be used in recommender systems in the learning domain. For each architecture the main requirements to use the time in a specific way is identified, and some algorithm ideas area presented. Scenarios are presented to illustrate how the proposal architectures can be useful. The results of this work can guide other researches on the field to apply recommender systems techniques in the learning domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brusilovsky, P.: Methods and Techniques of Adaptive Hypermedia. In: Brusilovsky, P., Kobsa, A., Vassileva, J. (eds.) Adaptive Hypertext and Hypermedia, pp. 1–43. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-017-0617-9_1
Campos, P.G., Díez, F., Cantador, I.: Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols. User Model User-Adapt. Interact. 24, 67–119 (2014)
de Borba, E.J., Gasparini, I., Lichtnow, D.: Time-aware recommender systems: a systematic mapping. In: Kurosu, M. (ed.) HCI 2017. LNCS, vol. 10272, pp. 464–479. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58077-7_38
Borba, E.J., Gasparini, I., Lichtnow, D.: The use of time dimension in recommender systems for learning. ICEIS 2, 600–609 (2017)
Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 1–35. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_1
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)
Beel, J., Breitinger, C., Langer, S., Lommatzsch, A., Gipp, B.: Towards reproducibility in recommender-systems research. User Model. User-Adapt. Interact. 26, 69–101 (2016)
Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, Paul B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_3
Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction. Cambridge University Press, New York (2011)
Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: Developing constraint-based recommenders. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 187–215. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_6
Burke, R.D.: Hybrid recommender systems: survey and experiments. User Model. User-Adapt. Interact. 12(4), 331–370 (2002)
Dey, A.K.: Understanding and using context. Ubiquitous Comput. 5(1), 4–7 (2001)
Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: Proceedings of the First Workshop Mobile Computing Systems and Applications (WMCSA 1994), pp. 85–90 (1994)
Chen, G., Kotz, D.: A Survey of Context-Aware Mobile Computing Research. Technical report (2000)
Zimmermann, A., Lorenz, A., Oppermann, R.: An operational definition of context. In: Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu, L. (eds.) CONTEXT 2007. LNCS (LNAI), vol. 4635, pp. 558–571. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74255-5_42
Schmidt, A., Beigl, M., Gellersen, G.H.: There is more to context than location. Comput. Gr. 23(6), 893–901 (1999)
Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217–253. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_7
Verbert, K., Manouselis, N., Ochoa, X., Wolpers, M., Drachsler, H., Bosnic, I., Duval, E.: Context-aware recommender systems for learning: a survey and future challenges. IEEE Trans. Learn. Technol. 5(4), 318–335 (2012)
Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in software engineering. In: 12th International Conference on Evaluation and Assessment in Software Engineering, vol. 17, no. 1 (2008)
Anacleto, R., Figueiredo, L., Almeida, A., Novais, P.: Mobile application to provide personalized sightseeing tours. J. Netw. Comput. Appl. 41, 56–64 (2014)
Kurihara, S., Moriyama, K., Numao, M.: Context-aware application prediction and recommendation in mobile devices. In: Web Intelligence, pp. 494–500 (2013)
Vo, C., Torabi, T., Loke, S.: Towards context-aware task recommendation. In: Joint Conferences on Pervasive Computing (JCPC), pp. 289–292 (2009)
Wei, C., Khoury, R., Fong, S.: Web 2.0 recommendation service by multi-collaborative filtering trust network algorithm. Inf. Syst. Front. 15(4), 533–551 (2013)
Vildjiounaite, E., Kyllönen, V., Hannula, T., Alahuhta, P.: Unobtrusive dynamic modelling of TV program preferences in a household. In: Tscheligi, M., Obrist, M., Lugmayr, A. (eds.) EuroITV 2008. LNCS, vol. 5066, pp. 82–91. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69478-6_9
Montes-García, A., Álvarez-Rodríguez, J., Labra-Gayo, J., Martínez-Merino, M.: Towards a journalist-based news recommendation system: the Wesomender approach. Expert Syst. Appl. 40(17), 6735–6741 (2013)
Zhang, Z., Liu, H.: Social recommendation model combining trust propagation and sequential behaviors. Appl. Intell. 43(3), 695–706 (2015)
IEEE: Draft Standard for Learning Object Metadata (2002). http://grouper.ieee.org/groups/ltsc/wg12/20020612-Final-LOM-Draft.html
Bell, T.: Extensive reading speed and comprehension. Read. Matrix 1(1), 1–13 (2001)
Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
de Borba, E.J., Gasparini, I., Lichtnow, D. (2018). Describing Scenarios and Architectures for Time-Aware Recommender Systems for Learning. In: Hammoudi, S., Śmiałek, M., Camp, O., Filipe, J. (eds) Enterprise Information Systems. ICEIS 2017. Lecture Notes in Business Information Processing, vol 321. Springer, Cham. https://doi.org/10.1007/978-3-319-93375-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-93375-7_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93374-0
Online ISBN: 978-3-319-93375-7
eBook Packages: Computer ScienceComputer Science (R0)