Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multibody Optimisations: From Kinematic Constraints to Knee Contact Forces and Ligament Forces

  • Chapter
  • First Online:
Biomechanics of Anthropomorphic Systems

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 124))

Abstract

Musculoskeletal models are widely used in biomechanics today to better understand muscle and joint function. Musculo-tendon forces as well as joint contact forces and ligament forces can be estimated within an inverse dynamics computational framework. Using a musculoskeletal model of the lower limb, this chapter presents the different optimisations required to drive the model with experimental data and to compute these forces and their interactions. In these optimisations, the development of anatomical constraints representing, for example, the medial and lateral tibiofemoral contacts or the cruciate ligaments is crucial both to inverse kinematics and to inverse dynamics. Some emblematic results are presented for knee contact forces and ligament forces during gait, illustrating the couplings between joint degrees of freedom and the interactions between forces acting both in muscles and in joints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

T :

matrix transpose

\( \dag \) :

matrix pseudo-inverse

\( {\mathbf{E}}_{3 \times 3} \) :

identity matrix

i :

index for segment

j :

index for skin or virtual marker (in inverse kinematics) or muscle (in inverse dynamics)

ui, vi, wi:

anterior, superior and lateral axes of segment

\( {\mathbf{r}}_{{P_{i} }} , \, {\mathbf{r}}_{{D_{i} }} \) :

positions of the proximal (Pi) and distal (Di) endpoints

\( \left( {P_{i} ,{\mathbf{u}}_{i} ,\underbrace {{\left( {{\mathbf{r}}_{{P_{i} }} - {\mathbf{r}}_{{D_{i} }} } \right)}}_{{{\mathbf{v}}_{i} }},{\mathbf{w}}_{i} } \right) \) :

non-orthonormal segment coordinate system

\( \left( {P_{i} ,{\mathbf{X}}_{i} ,{\mathbf{Y}}_{i} ,{\mathbf{Z}}_{i} } \right) \) :

orthonormal segment coordinate system

B i :

transformation matrix from the non-orthonormal to the orthonormal segment coordinate system

αi, βi, γi:

constant angles between the axes of the non-orthonormal segment coordinate system

L i :

segment length (between proximal and distal endpoints)

Q i :

natural coordinates (2 position and 2 direction vectors)

\( {\varvec{\Phi}}_{i}^{r} \) :

rigid body constraints

\( {\mathbf{r}}_{{M_{i}^{j} }} , \, {\mathbf{r}}_{{V_{i}^{j} }} \) :

position of skin or virtual marker (\( M_{i}^{j} \) or \( V_{i}^{j} \))

\( \left( {n_{i} } \right)_{u} , \, \left( {n_{i} } \right)_{v} , \, \left( {n_{i} } \right)_{w} \) :

coordinates in the non-orthonormal segment coordinate system

\( {\mathbf{N}}_{i}^{{}} \) :

interpolation matrix

\( {\varvec{\Phi}}^{k} \) :

kinematic constraints

d, θ:

model parameter (i.e. ligament length, angle between hinge axes)

\( {\varvec{\Phi}}^{m} \) :

driving constraints

G :

matrix of generalised masses

\( {\mathbf{Q}}, \, {\dot{\mathbf{Q}}}, \, {\ddot{\mathbf{Q}}}: \) :

vectors of generalised positions, velocities and accelerations for all segments

\( {\mathbf{K}} \) :

Jacobian matrix of the constraints

\( {\varvec{\uplambda}} \) :

vector of Lagrange multipliers

R :

vector of generalised ground reaction

\( {\mathbf{Z}}_{{{\mathbf{K}}_{2}^{T} }} \) :

orthogonal basis of the null space of \( {\mathbf{K}}_{2}^{T} \)(corresponding to a subset of the constraints)

P :

vector of generalised weights

L :

matrix of generalised muscular lever arms

f :

vector of musculo-tendon forces

f, J:

objective functions

W :

optimisation weights

\( {\mathbf{F}}_{0}^{{\mathbf{R}}} , \, {\mathbf{M}}_{0}^{{\mathbf{R}}} \) :

ground reaction force and moment vectors at the centre of pressure (P0)

\( f_{u}^{{{\mathbf{M}}_{0}^{{\mathbf{R}}} }} , \, f_{v}^{{{\mathbf{M}}_{0}^{{\mathbf{R}}} }} , \, f_{w}^{{{\mathbf{M}}_{0}^{{\mathbf{R}}} }} \) :

forces applied about the axes of the non-orthonormal foot coordinate system representing the ground reaction moment.

References

  1. Buchanan, T.S., Lloyd, D.G., Manal, K., Besier, T.F.: Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J. Appl. Biomech. 20(4), 367–395 (2004). https://doi.org/10.1123/jab.20.4.367

    Article  Google Scholar 

  2. Chèze, L., Moissenet, F., Dumas, R.: State of the art and current limits of musculo-skeletal models for clinical applications. Mov. Sport Sci. 90, 7–17 (2015). https://doi.org/10.1051/sm/2012026

    Article  Google Scholar 

  3. Erdemir, A., McLean, S., Herzog, W., van den Bogert, A.J.: Model-based estimation of muscle forces exerted during movements. Clin. Biomech. 22(2), 131–154 (2007). https://doi.org/10.1016/j.clinbiomech.2006.09.005

    Article  Google Scholar 

  4. Pandy, M.G., Andriacchi, T.P.: Muscle and joint function in human locomotion. Annu. Rev. Biomed. Eng. 12(1), 401–433 (2010). https://doi.org/10.1146/annurev-bioeng-070909-105259

    Article  Google Scholar 

  5. Zajac, F.E.: Understanding muscle coordination of the human leg with dynamical simulations. J. Biomech. 35(8), 1011–1018 (2002). https://doi.org/10.1016/S0021-9290(02)00046-5

    Article  Google Scholar 

  6. Dumas, R., Chèze, L, Verriest, J.P.: Adjustments to McConville et al. and Young et al. body segment inertial parameters. J. Biomech. 40(3), 543–553 (2007). https://doi.org/10.1016/j.jbiomech.2006.02.013

  7. Klein Horsman, M.D., Koopman, H.F.J.M., Helm, F.C.T., Prosé, L.P., Veeger, H.E.J.: Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin. Biomech. 22(2), 239–247 (2007). https://doi.org/10.1016/j.clinbiomech.2006.10.003

    Article  Google Scholar 

  8. van Arkel, R.J., Modenese, L., Phillips, A.T.M., Jeffers, J.R.T.: Hip abduction can prevent posterior edge loading of hip replacements. J. Orthop. Res. 31(8), 1172–1179 (2013). https://doi.org/10.1002/jor.22364

    Article  Google Scholar 

  9. Dumas, R., Chèze, L.: 3D inverse dynamics in non-orthonormal segment coordinate system. Med. Biol. Eng. Compu. 45(3), 315–322 (2007). https://doi.org/10.1007/s11517-006-0156-8

    Article  Google Scholar 

  10. Garcia de Jalon, J., Unda, J., Avello, A.: Natural coordinates for the computer analysis of multibody systems. Comput. Methods Appl. Mech. Eng. 56(3), 309–327 (1986). https://doi.org/10.1016/0045-7825(86)90044-7

    Article  MATH  Google Scholar 

  11. Duprey, S., Cheze, L., Dumas, R.: Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization. J. Biomech. 43(14), 2858–2862 (2010). https://doi.org/10.1016/j.jbiomech.2010.06.010

    Article  Google Scholar 

  12. Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D’Lima, D.D., Cristofolini, L., Witte, H., Schmid, O., Stokes, I.: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine. J. Biomech. 35(4), 543–548 (2002). https://doi.org/10.1016/S0021-9290(01)00222-6. International Society of Biomechanics

    Article  Google Scholar 

  13. Di Gregorio, R., Parenti-Castelli, V., O’Connor, J.J., Leardini, A.: Mathematical models of passive motion at the human ankle joint by equivalent spatial parallel mechanisms. Med. Biol. Eng. Compu. 45(3), 305–313 (2007). https://doi.org/10.1007/s11517-007-0160-7

    Article  Google Scholar 

  14. Feikes, J.D., O’Connor, J.J., Zavatsky, A.B.: A constraint-based approach to modelling the mobility of the human knee joint. J. Biomech. 36(1), 125–129 (2003). https://doi.org/10.1016/S0021-9290(02)00276-2

    Article  Google Scholar 

  15. Sancisi, N., Parenti-Castelli, V.: A new kinematic model of the passive motion of the knee inclusive of the patella. J. Mech. Rob. 3(4), 041003–041007 (2011). https://doi.org/10.1115/1.4004890

  16. Dumas, R., Moissenet, F., Gasparutto, X., Chèze, L.: Influence of joint models on lower-limb musculo-tendon forces and three-dimensional joint reaction forces during gait. Proc. Inst. Mech. Eng. [H] 226(2), 146–160 (2012). https://doi.org/10.1177/0954411911431396

    Article  Google Scholar 

  17. Moissenet, F., Chèze, L., Dumas, R.: Anatomical kinematic constraints: consequences on musculo-tendon forces and joint reactions. Multibody Sys. Dyn. 28(1), 125–141 (2012). https://doi.org/10.1007/s11044-011-9286-3

    Article  MathSciNet  Google Scholar 

  18. Begon, M., Andersen, M.S., Dumas, R.: Multibody kinematics optimization for the estimation of upper and lower limb human joint kinematics: a systematized methodological review. J. Biomech. Eng. (2017) (Accepted)

    Google Scholar 

  19. Ojeda, J., Martínez-Reina, J., Mayo, J.: A method to evaluate human skeletal models using marker residuals and global optimization. Mech. Mach. Theory 73, 259–272 (2014). https://doi.org/10.1016/j.mechmachtheory.2013.11.003

    Article  Google Scholar 

  20. Andersen, M.S., Benoit, D.L., Damsgaard, M., Ramsey, D.K., Rasmussen, J.: Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics. J. Biomech. 43(2), 268–273 (2010). https://doi.org/10.1016/j.jbiomech.2009.08.034

    Article  Google Scholar 

  21. Clément, J., Dumas, R., Hagemeister, N., de Guise, J.A.: Can generic knee joint models improve the measurement of osteoarthritic knee kinematics during squatting activity? Comput. Methods Biomech. Biomedical Eng. 20(1), 94–103 (2017). https://doi.org/10.1080/10255842.2016.1202935

    Article  Google Scholar 

  22. Gasparutto, X., Sancisi, N., Jacquelin, E., Parenti-Castelli, V., Dumas, R.: Validation of a multi-body optimization with knee kinematic models including ligament constraints. J. Biomech. 48(6), 1141–1146 (2015). https://doi.org/10.1016/j.jbiomech.2015.01.010

    Article  Google Scholar 

  23. Richard, V., Cappozzo, A., Dumas, R.: Comparative assessment of knee joint models used in multi-body kinematics optimisation for soft tissue artefact compensation. J. Biomech. 62, 95–101 (2017). https://doi.org/10.1016/j.jbiomech.2017.01.030

    Article  Google Scholar 

  24. Andersen, M.S., Damsgaard, M., Rasmussen, J.: Kinematic analysis of over-determinate biomechanical systems. Comput. Methods Biomech. Biomedical Eng. 12(4), 371–384 (2009). https://doi.org/10.1080/10255840802459412

    Article  Google Scholar 

  25. El Habachi, A., Moissenet, F., Duprey, S., Cheze, L., Dumas, R.: Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model. Med. Biol. Eng. Comput. 53(7), 655–667 (2015). https://doi.org/10.1007/s11517-015-1269-8

    Article  Google Scholar 

  26. Sancisi, N., Gasparutto, X., Parenti-Castelli, V., Dumas, R.: A multi-body optimization framework with a knee kinematic model including articular contacts and ligaments. Meccanica 52(3), 695–711 (2017). https://doi.org/10.1007/s11012-016-0532-x

    Article  MathSciNet  Google Scholar 

  27. Moissenet, F., Chèze, L., Dumas, R.: A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait. J. Biomech. 47(1), 50–58 (2014). https://doi.org/10.1016/j.jbiomech.2013.10.015

    Article  Google Scholar 

  28. Moissenet, F., Chèze, L., Dumas, R.: Influence of the level of muscular redundancy on the validity of a musculoskeletal model. J. Biomech. Eng. 138(2), 021019–021016 (2016). https://doi.org/10.1115/1.4032127

  29. Moissenet, F., Modenese, L., Dumas, R.: Alterations of musculoskeletal models for a more accurate estimation of lower limb joint contact forces during normal gait: a systematic review. J. Biomech. 63, 8–20 (2017). https://doi.org/10.1016/j.jbiomech.2017.08.025

    Article  Google Scholar 

  30. Cleather, D.J., Bull, A.M.J.: An optimization-based simultaneous approach to the determination of muscular, ligamentous, and joint contact forces provides insight into musculoligamentous interaction. Ann. Biomed. Eng. 39(7), 1925–1934 (2011). https://doi.org/10.1007/s10439-011-0303-8

    Article  Google Scholar 

  31. Collins, J.J.: The redundant nature of locomotor optimization laws. J. Biomech. 28(3), 251–267 (1995). https://doi.org/10.1016/0021-9290(94)00072-C

    Article  Google Scholar 

  32. Lin, Y.C., Kim, H.J., Pandy, M.G.: A computationally efficient method for assessing muscle function during human locomotion. Int. J. Numer. Methods Biomed. Eng. 27(3), 436–449 (2011). https://doi.org/10.1002/cnm.1396

    Article  MathSciNet  MATH  Google Scholar 

  33. Moissenet, F., Chèze, L., Dumas, R.: Contribution of individual musculo-tendon forces to the axial compression force of the femur during normal gait. Mov. Sport Sci. 93, 63–69 (2016). https://doi.org/10.1051/sm/2015041

    Article  Google Scholar 

  34. Moissenet, F., Chèze, L., Dumas, R.: Individual muscle contributions to ground reaction and to joint contact, ligament and bone forces during normal gait. Multibody Sys. Dyn. 40(2), 193–211 (2017). https://doi.org/10.1007/s11044-017-9564-9

    Article  MathSciNet  Google Scholar 

  35. Fregly, B.J., Besier, T.F., Lloyd, D.G., Delp, S.L., Banks, S.A., Pandy, M.G., D’Lima, D.D.: Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. 30(4), 503–513 (2012). https://doi.org/10.1002/jor.22023

    Article  Google Scholar 

  36. Dumas, R., Robert, T., Pomero, V., Chèze, L.: Joint and segment coordinate systems revisited. Comput. Methods Biomech. Biomed. Eng. 15(sup1), 183–185 (2012). https://doi.org/10.1080/10255842.2012.713646

    Article  Google Scholar 

  37. Gasparutto, X., Moissenet, F., Lafon, Y., Chèze, L., Dumas, R.: Kinematics of the normal knee during dynamic activities: a synthesis of data from intracortical pins and biplane imaging. Appl. Bion. Biomech. 2017, 9 (2017). https://doi.org/10.1155/2017/1908618

    Article  Google Scholar 

  38. Ogaya, S., Naito, H., Okita, Y., Iwata, A., Higuchi, Y., Fuchioka, S., Tanaka, M.: Contribution of muscle tension force to medial knee contact force at fast walking speed. J Mech. Med. Biol. 15(01), 1550002 (2015). https://doi.org/10.1142/S0219519415500025

    Article  Google Scholar 

  39. Sritharan, P., Lin, Y.C., Pandy, M.G.: Muscles that do not cross the knee contribute to the knee adduction moment and tibiofemoral compartment loading during gait. J. Orthop. Res. 30(10), 1586–1595 (2012). https://doi.org/10.1002/jor.22082

    Article  Google Scholar 

  40. Winby, C.R., Lloyd, D.G., Besier, T.F., Kirk, T.B.: Muscle and external load contribution to knee joint contact loads during normal gait. J. Biomech. 42(14), 2294–2300 (2009). https://doi.org/10.1016/j.jbiomech.2009.06.019

    Article  Google Scholar 

  41. Lerner, Z.F., DeMers, M.S., Delp, S.L., Browning, R.C.: How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces. J. Biomech. 48(4), 644–650 (2015). https://doi.org/10.1016/j.jbiomech.2014.12.049

    Article  Google Scholar 

  42. Saliba, C.M., Brandon, S.C.E., Deluzio, K.J.: Sensitivity of medial and lateral knee contact force predictions to frontal plane alignment and contact locations. J. Biomech. 57, 125–130 (2017). https://doi.org/10.1016/j.jbiomech.2017.03.005

    Article  Google Scholar 

  43. Zeighami, A., Aissaoui, R., Dumas, R.: Knee medial and lateral contact forces in a musculoskeletal model with subject-specific contact point trajectories. J. Biomech. 69, 138–145 (2018). https://doi.org/10.1016/j.jbiomech.2018.01.021

  44. Kumar, D., Rudolph, K.S., Manal, K.T.: EMG-driven modeling approach to muscle force and joint load estimations: Case study in knee osteoarthritis. J. Orthop. Res. 30(3), 377–383 (2012). https://doi.org/10.1002/jor.21544

    Article  Google Scholar 

  45. Shelburne, K.B., Torry, M.R., Pandy, M.G.: Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J. Orthop. Res. 24(10), 1983–1990 (2006). https://doi.org/10.1002/jor.20255

    Article  Google Scholar 

  46. Correa, T.A., Crossley, K.M., Kim, H.J., Pandy, M.G.: Contributions of individual muscles to hip joint contact force in normal walking. J. Biomech. 43(8), 1618–1622 (2010). https://doi.org/10.1016/j.jbiomech.2010.02.008

    Article  Google Scholar 

  47. Moissenet, F., Giroux, M., Chèze, L., Dumas, R.: Validity of a musculoskeletal model using two different geometries for estimating hip contact forces during normal walking. Comput. Methods Biomech. Biomed. Eng. 18(sup1), 2000–2001 (2015). https://doi.org/10.1080/10255842.2015.1069596

    Article  Google Scholar 

  48. Brito da Luz, S., Modenese, L., Sancisi, N., Mills, P.M., Kennedy, B., Beck, B.R., Lloyd, D.G.: Feasibility of using MRIs to create subject-specific parallel-mechanism joint models. J. Biomech. 53, 45–55 (2017). https://doi.org/10.1016/j.jbiomech.2016.12.018

    Article  Google Scholar 

  49. Clément, J., Dumas, R., Hagemeister, N., de Guise, J.A.: Soft tissue artifact compensation in knee kinematics by multi-body optimization: performance of subject-specific knee joint models. J. Biomech. 48(14), 3796–3802 (2015). https://doi.org/10.1016/j.jbiomech.2015.09.040

    Article  Google Scholar 

  50. Valente, G., Pitto, L., Stagni, R., Taddei, F.: Effect of lower-limb joint models on subject-specific musculoskeletal models and simulations of daily motor activities. J. Biomech. 48(16), 4198–4205 (2015). https://doi.org/10.1016/j.jbiomech.2015.09.042

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Dumas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dumas, R., Cheze, L., Moissenet, F. (2019). Multibody Optimisations: From Kinematic Constraints to Knee Contact Forces and Ligament Forces. In: Venture, G., Laumond, JP., Watier, B. (eds) Biomechanics of Anthropomorphic Systems. Springer Tracts in Advanced Robotics, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-319-93870-7_4

Download citation

Publish with us

Policies and ethics