Abstract
Musculoskeletal models are widely used in biomechanics today to better understand muscle and joint function. Musculo-tendon forces as well as joint contact forces and ligament forces can be estimated within an inverse dynamics computational framework. Using a musculoskeletal model of the lower limb, this chapter presents the different optimisations required to drive the model with experimental data and to compute these forces and their interactions. In these optimisations, the development of anatomical constraints representing, for example, the medial and lateral tibiofemoral contacts or the cruciate ligaments is crucial both to inverse kinematics and to inverse dynamics. Some emblematic results are presented for knee contact forces and ligament forces during gait, illustrating the couplings between joint degrees of freedom and the interactions between forces acting both in muscles and in joints.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- T :
-
matrix transpose
- \( \dag \) :
-
matrix pseudo-inverse
- \( {\mathbf{E}}_{3 \times 3} \) :
-
identity matrix
- i :
-
index for segment
- j :
-
index for skin or virtual marker (in inverse kinematics) or muscle (in inverse dynamics)
- ui, vi, wi:
-
anterior, superior and lateral axes of segment
- \( {\mathbf{r}}_{{P_{i} }} , \, {\mathbf{r}}_{{D_{i} }} \) :
-
positions of the proximal (Pi) and distal (Di) endpoints
- \( \left( {P_{i} ,{\mathbf{u}}_{i} ,\underbrace {{\left( {{\mathbf{r}}_{{P_{i} }} - {\mathbf{r}}_{{D_{i} }} } \right)}}_{{{\mathbf{v}}_{i} }},{\mathbf{w}}_{i} } \right) \) :
-
non-orthonormal segment coordinate system
- \( \left( {P_{i} ,{\mathbf{X}}_{i} ,{\mathbf{Y}}_{i} ,{\mathbf{Z}}_{i} } \right) \) :
-
orthonormal segment coordinate system
- B i :
-
transformation matrix from the non-orthonormal to the orthonormal segment coordinate system
- αi, βi, γi:
-
constant angles between the axes of the non-orthonormal segment coordinate system
- L i :
-
segment length (between proximal and distal endpoints)
- Q i :
-
natural coordinates (2 position and 2 direction vectors)
- \( {\varvec{\Phi}}_{i}^{r} \) :
-
rigid body constraints
- \( {\mathbf{r}}_{{M_{i}^{j} }} , \, {\mathbf{r}}_{{V_{i}^{j} }} \) :
-
position of skin or virtual marker (\( M_{i}^{j} \) or \( V_{i}^{j} \))
- \( \left( {n_{i} } \right)_{u} , \, \left( {n_{i} } \right)_{v} , \, \left( {n_{i} } \right)_{w} \) :
-
coordinates in the non-orthonormal segment coordinate system
- \( {\mathbf{N}}_{i}^{{}} \) :
-
interpolation matrix
- \( {\varvec{\Phi}}^{k} \) :
-
kinematic constraints
- d, θ:
-
model parameter (i.e. ligament length, angle between hinge axes)
- \( {\varvec{\Phi}}^{m} \) :
-
driving constraints
- G :
-
matrix of generalised masses
- \( {\mathbf{Q}}, \, {\dot{\mathbf{Q}}}, \, {\ddot{\mathbf{Q}}}: \) :
-
vectors of generalised positions, velocities and accelerations for all segments
- \( {\mathbf{K}} \) :
-
Jacobian matrix of the constraints
- \( {\varvec{\uplambda}} \) :
-
vector of Lagrange multipliers
- R :
-
vector of generalised ground reaction
- \( {\mathbf{Z}}_{{{\mathbf{K}}_{2}^{T} }} \) :
-
orthogonal basis of the null space of \( {\mathbf{K}}_{2}^{T} \)(corresponding to a subset of the constraints)
- P :
-
vector of generalised weights
- L :
-
matrix of generalised muscular lever arms
- f :
-
vector of musculo-tendon forces
- f, J:
-
objective functions
- W :
-
optimisation weights
- \( {\mathbf{F}}_{0}^{{\mathbf{R}}} , \, {\mathbf{M}}_{0}^{{\mathbf{R}}} \) :
-
ground reaction force and moment vectors at the centre of pressure (P0)
- \( f_{u}^{{{\mathbf{M}}_{0}^{{\mathbf{R}}} }} , \, f_{v}^{{{\mathbf{M}}_{0}^{{\mathbf{R}}} }} , \, f_{w}^{{{\mathbf{M}}_{0}^{{\mathbf{R}}} }} \) :
-
forces applied about the axes of the non-orthonormal foot coordinate system representing the ground reaction moment.
References
Buchanan, T.S., Lloyd, D.G., Manal, K., Besier, T.F.: Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J. Appl. Biomech. 20(4), 367–395 (2004). https://doi.org/10.1123/jab.20.4.367
Chèze, L., Moissenet, F., Dumas, R.: State of the art and current limits of musculo-skeletal models for clinical applications. Mov. Sport Sci. 90, 7–17 (2015). https://doi.org/10.1051/sm/2012026
Erdemir, A., McLean, S., Herzog, W., van den Bogert, A.J.: Model-based estimation of muscle forces exerted during movements. Clin. Biomech. 22(2), 131–154 (2007). https://doi.org/10.1016/j.clinbiomech.2006.09.005
Pandy, M.G., Andriacchi, T.P.: Muscle and joint function in human locomotion. Annu. Rev. Biomed. Eng. 12(1), 401–433 (2010). https://doi.org/10.1146/annurev-bioeng-070909-105259
Zajac, F.E.: Understanding muscle coordination of the human leg with dynamical simulations. J. Biomech. 35(8), 1011–1018 (2002). https://doi.org/10.1016/S0021-9290(02)00046-5
Dumas, R., Chèze, L, Verriest, J.P.: Adjustments to McConville et al. and Young et al. body segment inertial parameters. J. Biomech. 40(3), 543–553 (2007). https://doi.org/10.1016/j.jbiomech.2006.02.013
Klein Horsman, M.D., Koopman, H.F.J.M., Helm, F.C.T., Prosé, L.P., Veeger, H.E.J.: Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin. Biomech. 22(2), 239–247 (2007). https://doi.org/10.1016/j.clinbiomech.2006.10.003
van Arkel, R.J., Modenese, L., Phillips, A.T.M., Jeffers, J.R.T.: Hip abduction can prevent posterior edge loading of hip replacements. J. Orthop. Res. 31(8), 1172–1179 (2013). https://doi.org/10.1002/jor.22364
Dumas, R., Chèze, L.: 3D inverse dynamics in non-orthonormal segment coordinate system. Med. Biol. Eng. Compu. 45(3), 315–322 (2007). https://doi.org/10.1007/s11517-006-0156-8
Garcia de Jalon, J., Unda, J., Avello, A.: Natural coordinates for the computer analysis of multibody systems. Comput. Methods Appl. Mech. Eng. 56(3), 309–327 (1986). https://doi.org/10.1016/0045-7825(86)90044-7
Duprey, S., Cheze, L., Dumas, R.: Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization. J. Biomech. 43(14), 2858–2862 (2010). https://doi.org/10.1016/j.jbiomech.2010.06.010
Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D’Lima, D.D., Cristofolini, L., Witte, H., Schmid, O., Stokes, I.: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine. J. Biomech. 35(4), 543–548 (2002). https://doi.org/10.1016/S0021-9290(01)00222-6. International Society of Biomechanics
Di Gregorio, R., Parenti-Castelli, V., O’Connor, J.J., Leardini, A.: Mathematical models of passive motion at the human ankle joint by equivalent spatial parallel mechanisms. Med. Biol. Eng. Compu. 45(3), 305–313 (2007). https://doi.org/10.1007/s11517-007-0160-7
Feikes, J.D., O’Connor, J.J., Zavatsky, A.B.: A constraint-based approach to modelling the mobility of the human knee joint. J. Biomech. 36(1), 125–129 (2003). https://doi.org/10.1016/S0021-9290(02)00276-2
Sancisi, N., Parenti-Castelli, V.: A new kinematic model of the passive motion of the knee inclusive of the patella. J. Mech. Rob. 3(4), 041003–041007 (2011). https://doi.org/10.1115/1.4004890
Dumas, R., Moissenet, F., Gasparutto, X., Chèze, L.: Influence of joint models on lower-limb musculo-tendon forces and three-dimensional joint reaction forces during gait. Proc. Inst. Mech. Eng. [H] 226(2), 146–160 (2012). https://doi.org/10.1177/0954411911431396
Moissenet, F., Chèze, L., Dumas, R.: Anatomical kinematic constraints: consequences on musculo-tendon forces and joint reactions. Multibody Sys. Dyn. 28(1), 125–141 (2012). https://doi.org/10.1007/s11044-011-9286-3
Begon, M., Andersen, M.S., Dumas, R.: Multibody kinematics optimization for the estimation of upper and lower limb human joint kinematics: a systematized methodological review. J. Biomech. Eng. (2017) (Accepted)
Ojeda, J., Martínez-Reina, J., Mayo, J.: A method to evaluate human skeletal models using marker residuals and global optimization. Mech. Mach. Theory 73, 259–272 (2014). https://doi.org/10.1016/j.mechmachtheory.2013.11.003
Andersen, M.S., Benoit, D.L., Damsgaard, M., Ramsey, D.K., Rasmussen, J.: Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics. J. Biomech. 43(2), 268–273 (2010). https://doi.org/10.1016/j.jbiomech.2009.08.034
Clément, J., Dumas, R., Hagemeister, N., de Guise, J.A.: Can generic knee joint models improve the measurement of osteoarthritic knee kinematics during squatting activity? Comput. Methods Biomech. Biomedical Eng. 20(1), 94–103 (2017). https://doi.org/10.1080/10255842.2016.1202935
Gasparutto, X., Sancisi, N., Jacquelin, E., Parenti-Castelli, V., Dumas, R.: Validation of a multi-body optimization with knee kinematic models including ligament constraints. J. Biomech. 48(6), 1141–1146 (2015). https://doi.org/10.1016/j.jbiomech.2015.01.010
Richard, V., Cappozzo, A., Dumas, R.: Comparative assessment of knee joint models used in multi-body kinematics optimisation for soft tissue artefact compensation. J. Biomech. 62, 95–101 (2017). https://doi.org/10.1016/j.jbiomech.2017.01.030
Andersen, M.S., Damsgaard, M., Rasmussen, J.: Kinematic analysis of over-determinate biomechanical systems. Comput. Methods Biomech. Biomedical Eng. 12(4), 371–384 (2009). https://doi.org/10.1080/10255840802459412
El Habachi, A., Moissenet, F., Duprey, S., Cheze, L., Dumas, R.: Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model. Med. Biol. Eng. Comput. 53(7), 655–667 (2015). https://doi.org/10.1007/s11517-015-1269-8
Sancisi, N., Gasparutto, X., Parenti-Castelli, V., Dumas, R.: A multi-body optimization framework with a knee kinematic model including articular contacts and ligaments. Meccanica 52(3), 695–711 (2017). https://doi.org/10.1007/s11012-016-0532-x
Moissenet, F., Chèze, L., Dumas, R.: A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait. J. Biomech. 47(1), 50–58 (2014). https://doi.org/10.1016/j.jbiomech.2013.10.015
Moissenet, F., Chèze, L., Dumas, R.: Influence of the level of muscular redundancy on the validity of a musculoskeletal model. J. Biomech. Eng. 138(2), 021019–021016 (2016). https://doi.org/10.1115/1.4032127
Moissenet, F., Modenese, L., Dumas, R.: Alterations of musculoskeletal models for a more accurate estimation of lower limb joint contact forces during normal gait: a systematic review. J. Biomech. 63, 8–20 (2017). https://doi.org/10.1016/j.jbiomech.2017.08.025
Cleather, D.J., Bull, A.M.J.: An optimization-based simultaneous approach to the determination of muscular, ligamentous, and joint contact forces provides insight into musculoligamentous interaction. Ann. Biomed. Eng. 39(7), 1925–1934 (2011). https://doi.org/10.1007/s10439-011-0303-8
Collins, J.J.: The redundant nature of locomotor optimization laws. J. Biomech. 28(3), 251–267 (1995). https://doi.org/10.1016/0021-9290(94)00072-C
Lin, Y.C., Kim, H.J., Pandy, M.G.: A computationally efficient method for assessing muscle function during human locomotion. Int. J. Numer. Methods Biomed. Eng. 27(3), 436–449 (2011). https://doi.org/10.1002/cnm.1396
Moissenet, F., Chèze, L., Dumas, R.: Contribution of individual musculo-tendon forces to the axial compression force of the femur during normal gait. Mov. Sport Sci. 93, 63–69 (2016). https://doi.org/10.1051/sm/2015041
Moissenet, F., Chèze, L., Dumas, R.: Individual muscle contributions to ground reaction and to joint contact, ligament and bone forces during normal gait. Multibody Sys. Dyn. 40(2), 193–211 (2017). https://doi.org/10.1007/s11044-017-9564-9
Fregly, B.J., Besier, T.F., Lloyd, D.G., Delp, S.L., Banks, S.A., Pandy, M.G., D’Lima, D.D.: Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. 30(4), 503–513 (2012). https://doi.org/10.1002/jor.22023
Dumas, R., Robert, T., Pomero, V., Chèze, L.: Joint and segment coordinate systems revisited. Comput. Methods Biomech. Biomed. Eng. 15(sup1), 183–185 (2012). https://doi.org/10.1080/10255842.2012.713646
Gasparutto, X., Moissenet, F., Lafon, Y., Chèze, L., Dumas, R.: Kinematics of the normal knee during dynamic activities: a synthesis of data from intracortical pins and biplane imaging. Appl. Bion. Biomech. 2017, 9 (2017). https://doi.org/10.1155/2017/1908618
Ogaya, S., Naito, H., Okita, Y., Iwata, A., Higuchi, Y., Fuchioka, S., Tanaka, M.: Contribution of muscle tension force to medial knee contact force at fast walking speed. J Mech. Med. Biol. 15(01), 1550002 (2015). https://doi.org/10.1142/S0219519415500025
Sritharan, P., Lin, Y.C., Pandy, M.G.: Muscles that do not cross the knee contribute to the knee adduction moment and tibiofemoral compartment loading during gait. J. Orthop. Res. 30(10), 1586–1595 (2012). https://doi.org/10.1002/jor.22082
Winby, C.R., Lloyd, D.G., Besier, T.F., Kirk, T.B.: Muscle and external load contribution to knee joint contact loads during normal gait. J. Biomech. 42(14), 2294–2300 (2009). https://doi.org/10.1016/j.jbiomech.2009.06.019
Lerner, Z.F., DeMers, M.S., Delp, S.L., Browning, R.C.: How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces. J. Biomech. 48(4), 644–650 (2015). https://doi.org/10.1016/j.jbiomech.2014.12.049
Saliba, C.M., Brandon, S.C.E., Deluzio, K.J.: Sensitivity of medial and lateral knee contact force predictions to frontal plane alignment and contact locations. J. Biomech. 57, 125–130 (2017). https://doi.org/10.1016/j.jbiomech.2017.03.005
Zeighami, A., Aissaoui, R., Dumas, R.: Knee medial and lateral contact forces in a musculoskeletal model with subject-specific contact point trajectories. J. Biomech. 69, 138–145 (2018). https://doi.org/10.1016/j.jbiomech.2018.01.021
Kumar, D., Rudolph, K.S., Manal, K.T.: EMG-driven modeling approach to muscle force and joint load estimations: Case study in knee osteoarthritis. J. Orthop. Res. 30(3), 377–383 (2012). https://doi.org/10.1002/jor.21544
Shelburne, K.B., Torry, M.R., Pandy, M.G.: Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J. Orthop. Res. 24(10), 1983–1990 (2006). https://doi.org/10.1002/jor.20255
Correa, T.A., Crossley, K.M., Kim, H.J., Pandy, M.G.: Contributions of individual muscles to hip joint contact force in normal walking. J. Biomech. 43(8), 1618–1622 (2010). https://doi.org/10.1016/j.jbiomech.2010.02.008
Moissenet, F., Giroux, M., Chèze, L., Dumas, R.: Validity of a musculoskeletal model using two different geometries for estimating hip contact forces during normal walking. Comput. Methods Biomech. Biomed. Eng. 18(sup1), 2000–2001 (2015). https://doi.org/10.1080/10255842.2015.1069596
Brito da Luz, S., Modenese, L., Sancisi, N., Mills, P.M., Kennedy, B., Beck, B.R., Lloyd, D.G.: Feasibility of using MRIs to create subject-specific parallel-mechanism joint models. J. Biomech. 53, 45–55 (2017). https://doi.org/10.1016/j.jbiomech.2016.12.018
Clément, J., Dumas, R., Hagemeister, N., de Guise, J.A.: Soft tissue artifact compensation in knee kinematics by multi-body optimization: performance of subject-specific knee joint models. J. Biomech. 48(14), 3796–3802 (2015). https://doi.org/10.1016/j.jbiomech.2015.09.040
Valente, G., Pitto, L., Stagni, R., Taddei, F.: Effect of lower-limb joint models on subject-specific musculoskeletal models and simulations of daily motor activities. J. Biomech. 48(16), 4198–4205 (2015). https://doi.org/10.1016/j.jbiomech.2015.09.042
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Dumas, R., Cheze, L., Moissenet, F. (2019). Multibody Optimisations: From Kinematic Constraints to Knee Contact Forces and Ligament Forces. In: Venture, G., Laumond, JP., Watier, B. (eds) Biomechanics of Anthropomorphic Systems. Springer Tracts in Advanced Robotics, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-319-93870-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-93870-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93869-1
Online ISBN: 978-3-319-93870-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)