Abstract
Perhaps the most exciting challenge and opportunity in entity retrieval is how to leverage entity-specific properties—attributes, types, and relationships—to improve retrieval performance. In this chapter, we take a departure from purely term-based approaches toward semantically enriched retrieval models. We look at a number of specific entity retrieval tasks that have been studied at various benchmarking campaigns. Specifically, these tasks are ad hoc entity retrieval, list search, related entity finding, and similar entity search. Additionally, we also consider measures of (static) entity importance.
Chapter PDF
References
Balmin, A., Hristidis, V., Papakonstantinou, Y.: Objectrank: Authority-based keyword search in databases. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases - Volume 30, VLDB ’04, pp. 564–575. VLDB Endowment (2004)
Balog, K.: On the investigation of similarity measures for product resolution. In: Proceedings of the Workshop on Discovering Meaning On the Go in Large Heterogeneous Data, LHD-11 (2011)
Balog, K., Bron, M., De Rijke, M.: Query modeling for entity search based on terms, categories, and examples. ACM Trans. Inf. Syst. 29(4), 22:1–22:31 (2011a)
Balog, K., de Rijke, M.: Finding similar experts. In: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR ’07, pp. 821–822. ACM (2007). doi: 10.1145/1277741.1277926
Balog, K., Serdyukov, P., de Vries, A.P.: Overview of the TREC 2010 Entity track. In: Proceedings of the Nineteenth Text REtrieval Conference, TREC ’10. NIST (2011b)
Balog, K., Serdyukov, P., de Vries, A.P.: Overview of the TREC 2011 Entity track. In: The Twentieth Text REtrieval Conference Proceedings, TREC ’11. NIST (2012)
Balog, K., de Vries, A.P., Serdyukov, P., Thomas, P., Westerveld, T.: Overview of the TREC 2009 Entity track. In: Proceedings of the Eighteenth Text REtrieval Conference, TREC ’09. NIST (2010)
Bamba, B., Mukherjea, S.: Utilizing resource importance for ranking semantic web query results. In: Proceedings of the Second International Conference on Semantic Web and Databases, SWDB ’04, pp. 185–198. Springer (2005). doi: 10.1007/978-3-540-31839-2_14
Bast, H., Bäurle, F., Buchhold, B., Haussmann, E.: Semantic full-text search with Broccoli. In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’14, pp. 1265–1266. ACM (2014). doi: 10.1145/2600428.2611186
Blanco, R., Halpin, H., Herzig, D.M., Mika, P., Pound, J., Thompson, H.S., Duc, T.T.: Entity search evaluation over structured web data. In: Proceedings of the 1st International Workshop on Entity-Oriented Search, EOS ’11, pp. 65–71 (2011)
Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: Seventh International World-Wide Web Conference, WWW ’98 (1998)
Bron, M., Balog, K., de Rijke, M.: Ranking related entities: Components and analyses. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM ’10, pp. 1079–1088 (2010). doi: 10.1145/1871437.1871574
Bron, M., Balog, K., de Rijke, M.: Example-based entity search in the web of data. In: Proceedings of the 35th European conference on Advances in Information Retrieval, ECIR ’13, pp. 392–403. Springer (2013). doi: 10.1007/978-3-642-36973-5_33
Campinas, S., Delbru, R., Tummarello, G.: Effective retrieval model for entity with multi-valued attributes: BM25MF and beyond. In: Proceedings of the 18th International Conference on Knowledge Engineering and Knowledge Management, EKAW ’12, pp. 200–215. Springer (2012). doi: 10.1007/978-3-642-33876-2_19
Ciglan, M., Nørvåg, K., Hluchý, L.: The SemSets model for ad-hoc semantic list search. In: Proceedings of the 21st International Conference on World Wide Web, WWW ’12, pp. 131–140. ACM (2012). doi: 10.1145/2187836.2187855
Dali, L., Fortuna, B., Duc, T.T., Mladenić, D.: Query-independent learning to rank for RDF entity search. In: Proceedings of the 9th International Conference on The Semantic Web: Research and Applications, ESWC’12, pp. 484–498. Springer (2012). doi: 10.1007/978-3-642-30284-8_39
Delbru, R., Toupikov, N., Catasta, M., Tummarello, G., Decker, S.: Hierarchical link analysis for ranking web data. In: Proceedings of the 7th International Conference on The Semantic Web: Research and Applications - Volume Part II, ESWC’10, pp. 225–239. Springer (2010). doi: 10.1007/978-3-642-13489-0_16
Demartini, G., Firan, C.S., Iofciu, T., Krestel, R., Nejdl, W.: Why finding entities in Wikipedia is difficult, sometimes. Information Retrieval 13(5), 534–567 (2010a). doi: 10.1007/s10791-010-9135-7
Demartini, G., Iofciu, T., de Vries, A.: Overview of the INEX 2009 Entity Ranking track. In: Geva, S., Kamps, J., Trotman, A. (eds.) Focused Retrieval and Evaluation, Lecture Notes in Computer Science, vol. 6203, pp. 254–264. Springer (2010b). doi: 10.1007/978-3-642-14556-8_26
Demartini, G., de Vries, A.P., Iofciu, T., Zhu, J.: Overview of the INEX 2008 Entity Ranking track. In: Advances in Focused Retrieval: 7th International Workshop of the Initiative for the Evaluation of XML Retrieval (INEX 2008), pp. 243–252 (2009). doi: 10.1007/978-3-642-03761-0_25
Di, W., Sundaresan, N., Piramuthu, R., Bhardwaj, A.: Is a picture really worth a thousand words? - on the role of images in e-commerce. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, WSDM ’14, pp. 633–642. ACM (2014). doi: 10.1145/2556195.2556226
Fang, Y., Si, L.: Related entity finding by unified probabilistic models. World Wide Web 18(3), 521–543 (2015). doi: 10.1007/s11280-013-0267-8
Franz, T., Schultz, A., Sizov, S., Staab, S.: TripleRank: Ranking semantic web data by tensor decomposition. In: Proceedings of the 8th International Semantic Web Conference, ISWC ’09, pp. 213–228. Springer (2009). doi: 10.1007/978-3-642-04930-9_14
Goswami, A., Chittar, N., Sung, C.H.: A study on the impact of product images on user clicks for online shopping. In: Proceedings of the 20th International Conference Companion on World Wide Web, WWW ’11, pp. 45–46. ACM (2011). doi: 10.1145/1963192.1963216
Hasibi, F., Balog, K., Bratsberg, S.E.: Exploiting entity linking in queries for entity retrieval. In: Proceedings of the 2016 ACM on International Conference on the Theory of Information Retrieval, ICTIR ’16, pp. 209–218. ACM (2016). doi: 10.1145/2970398.2970406
He, Y., Xin, D.: SEISA: Set expansion by iterative similarity aggregation. In: Proceedings of the 20th International Conference on World Wide Web, WWW ’11. ACM (2011). doi: 10.1145/1963405.1963467
Hoffart, J., Seufert, S., Nguyen, D.B., Theobald, M., Weikum, G.: KORE: Keyphrase overlap relatedness for entity disambiguation. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM ’12, pp. 545–554. ACM (2012). doi: 10.1145/2396761.2396832
Hofmann, K., Balog, K., Bogers, T., de Rijke, M.: Contextual factors for finding similar experts. Journal of the American Society for Information Science and Technology 61(5), 994–1014 (2010). doi: https://doi.org/10.1002/asi.v61:5
Hogan, A., Harth, A., Decker, S.: ReConRank: A scalable ranking method for semantic web data with context. In: 2nd Workshop on Scalable Semantic Web Knowledge Base Systems (2006)
Jeh, G., Widom, J.: SimRank: A measure of structural-context similarity. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’02, pp. 538–543. ACM (2002). doi: 10.1145/775047.775126
Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Extrapolation methods for accelerating pagerank computations. In: Proceedings of the 12th International Conference on World Wide Web, WWW ’03, pp. 261–270. ACM (2003). doi: 10.1145/775152.775190
Kaptein, R., Kamps, J.: Exploiting the category structure of Wikipedia for entity ranking. Artificial Intelligence 194, 111–129 (2013). doi: 10.1016/j.artint.2012.06.003
Kaptein, R., Koolen, M., Kamps, J.: Result diversity and entity ranking experiments: anchors, links, text and Wikipedia. In: Proceedings of the Eighteenth Text REtrieval Conference, TREC ’09. NIST (2010a)
Kaptein, R., Serdyukov, P., De Vries, A., Kamps, J.: Entity ranking using Wikipedia as a pivot. In: Proceedings of the 19th ACM international conference on Information and knowledge management, CIKM ’10, pp. 69–78. ACM (2010b). doi: 10.1145/1871437.1871451
Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999). doi: 10.1145/324133.324140
Li, X., Li, C., Yu, C.: EntityEngine: Answering entity-relationship queries using shallow semantics. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM ’10, pp. 1925–1926. ACM (2010). doi: 10.1145/1871437.1871766
Lin, Y., Michel, J.B., Aiden, E.L., Orwant, J., Brockman, W., Petrov, S.: Syntactic annotations for the Google books Ngram corpus. In: Proceedings of the ACL 2012 System Demonstrations, ACL ’12, pp. 169–174. Association for Computational Linguistics (2012)
Losada, D.E., Azzopardi, L.: Assessing multivariate Bernoulli models for information retrieval. ACM Trans. Inf. Syst. 26(3), 17:1–17:46 (2008). doi: 10.1145/1361684.1361690
Metzger, S., Schenkel, R., Sydow, M.: QBEES: Query-by-example entity search in semantic knowledge graphs based on maximal aspects, diversity-awareness and relaxation. J. Intell. Inf. Syst. 49(3), 333–366 (2017). doi: 10.1007/s10844-017-0443-x
Metzler, D., Croft, W.B.: A Markov Random Field model for term dependencies. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’05, pp. 472–479. ACM (2005). doi: 10.1145/1076034.1076115
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, NIPS’13, pp. 3111–3119. Curran Associates Inc. (2013)
Milne, D., Witten, I.H.: Learning to link with Wikipedia. In: Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM ’08, pp. 509–518 (2008). doi: 10.1145/1458082.1458150
Minkov, E., Cohen, W.W.: Improving graph-walk-based similarity with reranking: Case studies for personal information management. ACM Trans. Inf. Syst. 29(1), 4:1–4:52 (2010). doi: 10.1145/1877766.1877770
Nie, Z., Zhang, Y., Wen, J.R., Ma, W.Y.: Object-level ranking: Bringing order to web objects. In: Proceedings of the 14th International Conference on World Wide Web, WWW ’05, pp. 567–574. ACM (2005). doi: 10.1145/1060745.1060828
Pehcevski, J., Thom, J.A., Vercoustre, A.M., Naumovski, V.: Entity ranking in Wikipedia: utilising categories, links and topic difficulty prediction. Information Retrieval 13(5), 568–600 (2010). doi: 10.1007/s10791-009-9125-9
Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In: Empirical Methods in Natural Language Processing, EMNLP ’14, pp. 1532–1543 (2014)
Raviv, H., Carmel, D., Kurland, O.: A ranking framework for entity oriented search using Markov Random Fields. In: Proceedings of the 1st Joint International Workshop on Entity-Oriented and Semantic Search, JIWES ’12, pp. 1:1–1:6. ACM (2012). doi: 10.1145/2379307.2379308
Sarmento, L., Jijkuon, V., de Rijke, M., Oliveira, E.: “More like these”: Growing entity classes from seeds. In: Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, CIKM ’07, pp. 959–962. ACM (2007). doi: 10.1145/1321440.1321585
Schuhmacher, M., Dietz, L., Paolo Ponzetto, S.: Ranking entities for web queries through text and knowledge. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM ’15, pp. 1461–1470. ACM (2015). doi: 10.1145/2806416.2806480
Schuhmacher, M., Ponzetto, S.P.: Knowledge-based graph document modeling. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, WSDM ’14, pp. 543–552 (2014). doi: 10.1145/2556195.2556250
Sehgal, V., Getoor, L., Viechnicki, P.D.: Entity resolution in geospatial data integration. In: Proceedings of the 14th Annual ACM International Symposium on Advances in Geographic Information Systems, GIS ’06, pp. 83–90. ACM (2006). doi: 10.1145/1183471.1183486
Tonon, A., Demartini, G., Cudré-Mauroux, P.: Combining inverted indices and structured search for ad-hoc object retrieval. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’12, pp. 125–134. ACM (2012). doi: 10.1145/2348283.2348304
Voskarides, N., Meij, E., Tsagkias, M., de Rijke, M., Weerkamp, W.: Learning to explain entity relationships in knowledge graphs. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 564–574. Association for Computational Linguistics (2015)
de Vries, A.P., Vercoustre, A.M., Thom, J.A., Craswell, N., Lalmas, M.: Overview of the INEX 2007 Entity Ranking track. In: Proceedings of the 6th Initiative on the Evaluation of XML Retrieval, INEX ’07, pp. 245–251. Springer (2008). doi: 10.1007/978-3-540-85902-4_22
Wang, C., Chakrabarti, K., He, Y., Ganjam, K., Chen, Z., Bernstein, P.A.: Concept expansion using web tables. In: Proceedings of the 24th International Conference on World Wide Web, WWW ’15, pp. 1198–1208. International World Wide Web Conferences Steering Committee (2015). doi: 10.1145/2736277.2741644
Yang, L., Guo, Q., Song, Y., Meng, S., Shokouhi, M., McDonald, K., Croft, W.B.: Modeling user interests for zero-query ranking. In: Proceedings of the 38th European Conference on IR Research, ECIR ’16, pp. 171–184. Springer (2016). doi: 10.1007/978-3-319-30671-1_13
Author information
Authors and Affiliations
Rights and permissions
Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Copyright information
© 2018 The Editor(s) (if applicable) and the Author(s)
About this chapter
Cite this chapter
Balog, K. (2018). Semantically Enriched Models for Entity Ranking. In: Entity-Oriented Search. The Information Retrieval Series, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-93935-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-93935-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-93933-9
Online ISBN: 978-3-319-93935-3
eBook Packages: Computer ScienceComputer Science (R0)