Abstract
Predictive analysis of social media data has attracted considerable attention from the research community as well as the business world because of the essential and actionable information it can provide. Over the years, extensive experimentation and analysis for insights have been carried out using Twitter data in various domains such as healthcare, public health, politics, social sciences, and demographics. In this chapter, we discuss techniques, approaches, and state-of-the-art applications of predictive analysis of Twitter data. Specifically, we present fine-grained analysis involving aspects such as sentiment, emotion, and the use of domain knowledge in the coarse-grained analysis of Twitter data for making decisions and taking actions, and relate a few success stories.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
TweetObject.https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/tweet-object.
- 3.
UserObject.https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/user-object.
- 4.
How do Neural networks mimic the human brain? https://www.marshall.usc.edu/blog/how-do-neural-networks-mimic-human-brain.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
These tweets were modified before we share them in this chapter.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
References
Purohit, H., Sheth, A.: Twitris v3: from citizen sensing to analysis, coordination and action. In: ICWSM (2013)
Davis, C.A., Ciampaglia, G.L., Aiello, L.M., Chung, K., Conover, M.D., Ferrara, E., Flammini, A., Fox, G.C., Gao, X., Gonçalves, B., Grabowicz, P.A., Hong, K., Hui, P.-M., Mccaulay, S., Mckelvey, K., Meiss, M.R., Patil, S., Kankanamalage, C.P., Pentchev, V., Qiu, J., Ratkiewicz, J., Rudnick, A., Serrette, B., Shiralkar, P., Varol, O., Weng, L., Wu, T.-L., Younge, A.J., Menczer F.: OSoMe: the IUNI observatory on social media. PeerJ Comput. Sci. (2016)
Sheth, A., Purohit, H., Smith, G.A., Brunn, J., Jadhav, A., Kapanipathi, P., Lu, C., Wang, W.: Twitris: a system for collective social intelligence. In: Encyclopedia of Social Network Analysis and Mining (2018)
Penuel, K.B., Statler, M.: Encyclopedia of Disaster Relief. Sage Publications, Thousand Oaks (2011)
Malilay, J., Heumann, M., Perrotta, D., Wolkin, A.F., Schnall, A.H., Podgornik, M.N., Cruz, M.A., Horney, J.A., Zane, D., Roisman, R., Greenspan, J.R., Thoroughman, D., Anderson, H.A., Wells, E.V., Simms E.F.: The role of applied epidemiology methods in the disaster management cycle. Am. J. Public Health 104(10), 2092–2102 (2014)
Wang, W., Chen, L., Thirunarayan, K., Sheth, A.P.: Harnessing twitter ‘Big Data’ for automatic emotion identification. In: IEEE International Conference on Social Computing (SocialCom) (2012)
Lamy, F.R., Daniulaityte, R., Nahhas, R.W., Barratt, M.J., Smith, A.G., Sheth, A., Martins, S.S., Boyer, E.W., Carlson, R.G.: Increases in synthetic cannabinoids-related harms: results from a longitudinal web-based content analysis. Int. J. Drug Policy (2017)
Sheth, A., Kapanipathi, P.: Semantic filtering for social data. IEEE Internet Comput. (2016)
Kapanipathi, P., Orlandi, F., Sheth, A., Passant A.: Personalized filtering of the twitter stream. In: SPIM Workshop at ISWC 2011 (2011)
Kapanipathi, P., Jain, P., Venkataramani, C., Sheth, A.: User interests identification on twitter using a hierarchical knowledge base. In: European Semantic Web Conference (2014)
Cameron, D., Smith, G.A., Daniulaityte, R., Sheth, A.P., Dave, D., Chen, L., Anand, G., Carlson, R., Watkins, K.Z., Falck, R.: PREDOSE: a semantic web platform for drug abuse epidemiology using social media. J. Biomed. Inform. 46, 985–997 (2013)
Saif, H.: Semantic Sentiment Analysis in Social Streams. IOS Press, Amsterdam (2017)
Wijeratne, S., Sheth, A., Bhatt, S., Balasuriya, L., Al-Olimat, H.S., Gaur, M., Yazdavar, A.H., Thirunarayan, K.: Feature engineering for twitter-based applications. In: Feature Engineering for Machine Learning and Data Analytics, p. 35 (2017)
Gimpel, K., Schneider, N., O ’connor, B., Das, D., Mills, D., Eisenstein, J., Heilman, M., Yogatama, D., Flanigan, J., Smith, N.A.: Part-of-speech tagging for twitter: annotation, features, and experiments. In: Proceedings of ACL (2011)
Wagner, C., Asur, S., Hailpern, J.: Religious politicians and creative photographers: automatic user categorization in twitter. In: SocialCom (2013)
Wang, X., Wei, F., Liu, X., Zhou, M., Zhang, M.: Topic sentiment analysis in twitter: a graph-based hashtag sentiment classification approach. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. ACM, New York (2011)
Davidov, D., Tsur, O., Rappoport, A.: Enhanced sentiment learning using twitter hashtags and smileys. In: Proceedings of the 23rd International Conference on Computational Linguistics, pp. 241–249. ACM, New York (2010)
Kouloumpis, E., Wilson, T., Moore, J.: Twitter sentiment analysis: the good the bad and the omg! In: Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (ICWSM 11), pp. 538–541 (2011)
Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the 20th International Conference on World Wide Web. (2011)
Morstatter, F., Pfeffer, J., Liu, H., Carley, K.M.: Is the sample good enough? Comparing data from twitter’s streaming API with twitter’s firehose. In: ICWSM, pp. 400–408 (2013)
Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. Technical Report (2009)
Agarwal, A., Xie, B., Vovsha, I.: Sentiment analysis of twitter data. In: Proceedings of the Workshop on Language in Social Media (LSM 2011), pp. 30–38 (2011)
Suh, B., Hong, L., Pirolli, P., Chi, E.H.: Want to be retweeted? Large scale analytics on factors impacting retweet in twitter network. In: IEEE International Conference on Social Computing Social Computing (SocialCom) (2010)
Naveed, N., Gottron, T., Kunegis, J., Alhadi, A.C.: Bad news travel fast : a content-based analysis of interestingness on twitter. In: Proceedings of the 3rd International Web Science Conference. ACM, New York (2011)
Thomas, K., Grier, C., Paxson, V.: Suspended accounts in retrospect: an analysis of twitter spam. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement (2011)
Liu, K.-L., Li, W.-J., Guo, M.: Emoticon smoothed language models for twitter sentiment analysis. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (2012)
Zhai, C., Lafferty, J., Lafferty, J., Zhai, C.: A study of smoothing methods for language models applied to information retrieval. ACM Trans. Inform. Syst. 22(2), 179–214 (2004)
Boia, M., Faltings, B.: A :) is worth a thousand words: how people attach sentiment to emoticons and words in tweets. In: SocialCom (2013)
Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREc, vol. 10 (2010)
Kelly, R., Watts, L.: Characterising the inventive appropriation of emoji as relationally meaningful in mediated close personal relationships. In: Experiences of Technology Appropriation: Unanticipated Users, Usage, Circumstances, and Design (2015)
Novak, P.K., Smailović, J., Sluban, B., Mozetič, I.: Sentiment of emojis. PLOS One (2015)
Miller, H., Thebault-Spieker, J., Chang, S., Johnson, I., Terveen, L., Hecht, B.: ‘Blissfully happy’ or ‘ready to fight’: varying interpretations of emoji. In: International AAAI Conference on Web and Social Media, ICWSM, pp. 259–268 (2016)
Wijeratne, S., Balasuriya, L., Sheth, A., Doran, D.: EmojiNet: an open service and API for emoji sense discovery. In: ICWSM (2017)
Varol, O., Ferrara, E., Menczer, F., Flammini, A.: Early detection of promoted campaigns on social media. EPJ Data Sci. 6(1), 13 (2017)
Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Networks 179, 215–239 (1978)
Freeman, L.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)
Bonacich, P.: Power and centrality : a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987)
Lawyer, G.: Understanding the influence of all nodes in a network. Nat. Sci. Rep. (2015)
Pennacchiotti, M., Popescu, A.-M.: Democrats, republicans and starbucks afficionados: user classification in twitter. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2011)
Irfan, R., King, C.K., Grages, D., Ewen, S., Khan, S.U., Madani, S.A., Kolodziej, J., Wang, L., Chen, D., Rayes, A., Tziritas, N., Xu, C.-Z., Zomaya, A.Y., Alzahrani, A.S., Li, H.X.: A survey on text mining in social networks. Knowl. Eng. Rev. 000, 1–24 (2004)
Nassirtoussi, A.K., Aghabozorgi, S., Wah, T.Y., Chek, D., Ngo, L.: Text mining for market prediction: a systematic review. Expert Syst. Appl. 41, 7653–7670 (2014)
Franch, F.: (Wisdom of the crowds) : 2010 UK election prediction with social media. J. Inform. Technol. Polit. 10(1), 57–71 (2013)
Bravo-Marquez, F., Gayo-Avello, D., Mendoza, M., Poblete, B.: Opinion dynamics of elections in twitter. In: Eighth Latin American Web Congress (2012)
Hong, L., Dan, O., Davison, B.: Predicting popular messages in twitter. In: WWW (2011)
Sokolova, M., Huang, K., Matwin, S., Ramisch, J., Sazonova, V., Black, R., Orwa, C., Ochieng, S., Sambuli, N.: Topic modelling and event identification from twitter textual data (2016). ArXiv preprint
Dumais, S.T.: Latent semantic analysis. Annu. Rev. Inform. Sci. Technol. 3(11), 4356 (2008)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. Adv. Neural Inf. Proces. Syst. (2013)
Wijeratne, S., Balasuriya, L., Doran, D., Sheth, A., Org, A.: Word embeddings to enhance twitter gang member profile identification. In: IJCAI Workshop on Semantic Machine Learning (2016)
Balasuriya, L., Wijeratne, S., Doran, D., Sheth, A.: Finding street gang members on twitter. In: ASONAM (2016)
Sakaki, S., Miura, Y., Ma, X., Hattori, K., Ohkuma, T.: Twitter user gender inference using combined analysis of text and image processing. In: Proceedings of the 25th International Conference on Computational Linguistics, pp. 54–61 (2014)
Bontcheva, K., Derczynski, L., Funk, A., Greenwood, M.A., Maynard, D., Aswani, N.: TwitIE : an open-source information extraction pipeline for microblog text. In: Proceedings of Recent Advances in Natural Language Processing, pp. 83–90 (2013)
Mitra, T., Gilbert, E.: CREDBANK: a large-scale social media corpus with associated credibility annotations. In: ICWSM (2016)
De Choudhury, M., Gamon, M., Counts, S., Horvitz, E.: Predicting depression via social media. In: ICWSM (2013)
Lewenberg, Y., Bachrach, Y., Volkova, S.: Using emotions to predict user interest areas in online social networks. In: Data Science and Advanced Analytics (DSAA) (2015)
Wang, H., Can, D., Kazemzadeh, A., Bar, F., Narayanan, S.: A system for real-time twitter sentiment analysis of 2012 U.S. Presidential election cycle. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pp. 115–120 (2012)
Ebrahimi, M., Yazdavar, A.H., Sheth, A.: On the challenges of sentiment analysis for dynamic events. IEEE Intell. Syst. (2017)
Vieweg, S., Hughes, A.L., Starbird, K., Palen, L.: Microblogging during two natural hazards events: what twitter may contribute to situational awareness. In: CHI - Crisis Informatics (2010)
Chen, L., Wang, W., Sheth, A.P.: Are twitter users equal in predicting elections? A study of user groups in predicting 2012 U.S. Republican Presidential primaries. In: Social Informatics (2012)
De Choudhury, M., Jhaver, S., Sugar, B., Weber, I.: Social media participation in an activist movement for racial equality. In: ICSWM, pp. 92–101 (2016)
Purohit, H., Hampton, A., Shalin, V.L., Sheth, A.P., Flach, J., Bhatt, S.: What kind of #conversation is twitter? Mining #psycholinguistic cues for emergency coordination. Comput. Hum. Behav. 29, 2438–2447 (2013)
Purohit, H., Hampton, A., Bhatt, S., Shalin, V.L., Sheth, A.P., Flach, J.M.: Identifying seekers and suppliers in social media communities to support crisis coordination. In: Computer Supported Cooperative Work (CSCW) (2014)
Purohit, H., Bhatt, S., Hampton, A., Shalin, V.L., Sheth, A.P.: With whom to coordinate, why and how in ad- hoc social media communications during crisis response. In: Proceedings of the 11th International ISCRAM Conference, pp. 787–791 (2014)
Bhatt, S., Purohit, H., Hampton, A.: Assisting coordination during crisis: a domain ontology based approach to infer resource needs from tweets. In: Web Science (2014)
Nguyen, L.T., Wu, P., Chan, W., Peng, W., Zhang, Y.: Predicting collective sentiment dynamics from time-series social media. In: Proceedings of the First International Workshop on Issues of Sentiment Discovery and Opinion Mining (WISDOM), pp. 6:1–6:8 (2012)
Stojanovski, D., Strezoski, G., Madjarov, G., Dimitrovski, I.: Finki at SemEval-2016 task 4: deep learning architecture for twitter sentiment analysis. In: Proceedings of SemEval, pp. 149–154 (2016)
Esuli, A., Sebastiani, F., Nazionale, C., Ricerche, D.: Optimizing text quantifiers for multivariate loss functions. ACM Trans. Knowl. Discov. Data. VV 26 (2015)
Griffiths, T.L., Steyvers, M., Tenenbaum, J.B.: Topics in semantic representation. Psychol. Rev. (2007)
Chen, L., Org, C., Wang, W., Org, W., Nagarajan, M., Wang, S., Sheth, A.P., Org, A.: Extracting diverse sentiment expressions with target-dependent polarity from twitter. In: Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media (2012)
Hong, L., Davison, B.D.: Empirical study of topic modeling in twitter. In: 1st Workshop on Social Media Analytics (SOMA’10) (2010)
Zhao, W.X., Jiang, J., He, J., Song, Y., Achananuparp, P., Lim, E.-P., Li, X.: Topical keyphrase extraction from twitter. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pp. 379–388 (2011)
Wang, X., Gerber, M.S., Brown, D.E.: Automatic crime prediction using events extracted from twitter posts. In: International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction. Springer, Berlin (2012)
Bhattacharya, N., Arpinar, I., Kursuncu, U.: Real time evaluation of quality of search terms during query expansion for streaming text data using velocity and relevance. In: Proceedings - IEEE 11th International Conference on Semantic Computing, ICSC 2017 (2017)
Phillips, L., Dowling, C., Shaffer, K., Hodas, N., Volkova, S.: Using social media to predict the future: a systematic literature review (2017). Arxiv preprint
Robillard, J.M., Johnson, T.W., Hennessey, C., Beattie, B.L., Illes, J.: Aging 2.0: health information about dementia on twitter. Plos One 20(87) (2013)
Prieto, V.M., Rgio Matos, S., Lvarez, M., Cacheda, F., Oliveira, J.L., Añ, J.A.: Twitter: a good place to detect health conditions. PLoS ONE 9(1) (2014)
Yazdavar, A.H., Al-Olimat, H.S., Ebrahimi, M., Bajaj, G., Banerjee, T., Thirunarayan, K., Pathak, J., Sheth, A.: Semi-supervised approach to monitoring clinical depressive symptoms in social media. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (2017)
Coppersmith, G., Dredze, M., Harman, C., Hollingshead Ihmc, K.: From ADHD to SAD: analyzing the language of mental health on twitter through self-reported diagnoses. In: Proceedings of the 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, pp. 1–10 (2015)
Do, T.H., Nguyen, D.M., Tsiligianni, E., Cornelis, B., Deligiannis, N.: Multiview deep learning for predicting twitter users’ location (2017). Arxiv preprint
Lau, J.H., Baldwin, T.: An empirical evaluation of doc2vec with practical insights into document embedding generation (2016). Arxiv preprint
Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)
Bo, H., Cook, P., Imoth, T., Dw, B.: Geolocation prediction in social media data by finding location indicative words. In: Proceedings of COLING 2012, pp. 1045–1062 (2012)
Daniulaityte, R., Nahhas, R.W., Wijeratne, S., Carlson, R.G., Lamy, F.R., Martins, S.S., Boyer, E.W., Smith, G.A., Sheth, A.: Time for dabs: analyzing twitter data on marijuana concentrates across the U.S. HHS public access. Drug Alcohol Depend. 155, 307–311 (2015)
Lamy, F.R., Daniulaityte, R., Sheth, A., Nahhas, R.W., Martins, S.S., Boyer, E.W., Carlson Francois R Lamy, R.G.: Those edibles hit hard: exploration of twitter data on cannabis edibles in the U.S HHS public access. Drug Alcohol Depend. 1(164), 64–70 (2016)
Howard, P.N., Hussain, M., Mari, W.: Opening closed regimes what was the role of social media during the Arab Spring? In: Project on Information Technology & Political Islam (2011)
Tufekci, Z.: Big questions for social media big data: representativeness, validity and other methodological pitfalls. In: ICWSM (2014)
Arpinar, I., Kursuncu, U., Achilov, D.: Social media analytics to identify and counter Islamist extremism: systematic detection, evaluation, and challenging of extremist narratives online. In: Proceedings - 2016 International Conference on Collaboration Technologies and Systems, CTS 2016 (2016)
Haciyakupoglu, G., Zhang, W.: Social media and trust during the Gezi protests in turkey. J. Comput. Mediat. Commun. 20(4), 450–466 (2015)
Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 election. J. Econ. Perspect. 31(2, Spring), 211–236 (2017)
Hoang, T.-A., Cohen, W.W., Lim, E.-P., Pierce, D., Redlawsk, D.P.: Politics, sharing and emotion in microblogs. In: ASONAM (2013)
Makazhanov, A., Rafiei, D.: Predicting political preference of twitter users. Soc. Netw. Anal. Min. (2014)
Cohen, R., Ruths, D.: Classifying political orientation on twitter: it’s not easy! In: ICWSM (2013)
Xu, J.-M., Jun, K.-S., Zhu, X., Bellmore, A.: Learning from bullying traces in social media. In: 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 656–666 (2012)
Chen, Y., Zhu, S., Zhou, Y., Xu, H.: Detecting offensive language in social media to protect adolescent online safety. In: Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference on and 2012 International Conference on Social Computing (SocialCom) (2012)
Edupuganti, V.: Harassment detection on twitter using conversations. Ph.D. dissertation (2017)
Kandakatla, R.: Identifying offensive videos on YouTube. Ph.D. dissertation (2016)
Wijeratne, S., Doran, D., Sheth, A., Dustin, J.L.: Analyzing the social media footprint of street gangs. In: Intelligence and Security Informatics (ISI) (2015)
Blevins, T., Kwiatkowski, R., Macbeth, J., Mckeown, K., Patton, D., Rambow, O.: Automatically processing tweets from gang-involved youth: towards detecting loss and aggression. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 2196–2206 (2016)
Bushman B., Huesmann, L.: Short-term and long-term effects of violent media on aggression in children and adults. Arch. Pediatr. Adolesc. Med. 160, 348–352 (2006)
Ni, M., He, Q., Gao, J.: Using social media to predict traffic flow under special event conditions. In: The 93rd Annual Meeting of Transportation Research Board (2014)
Krishnamurthy, R., Kapanipathi, P., Sheth, A.P., Thirunarayan, K., Sheth, A.: Location prediction of twitter users using wikipedia (2014)
Mahmud, J., Nichols, J., Drews, C.: Where is this tweet from? Inferring home locations of twitter users. In: ICWSM (2012)
Al-Olimat, H.S., Thirunarayan, K., Shalin, V., Sheth, A.: Location name extraction from targeted text streams using Gazeeer-based statistical language models, vol. 11, no. 17 (2017). Arxiv preprint
Haklay, M., Weber, P.: OpenStreetMap: user-generated street maps. IEEE Pers. Commun. 7, 12–18 (2008)
Ahlers, D.: Assessment of the accuracy of GeoNames gazetteer data. In: GIR (2013)
Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia ’ a large-scale, multilingual knowledge base extracted from wikipedia. Semantic Web, vol. 1, pp. 1–5 (2012)
Lee, M.D., Lee, M.N.: The relationship between crowd majority and accuracy for binary decisions. Judgm. Decis. Mak. 12(4), 328–343 (2017)
Bhatt, S., Minnery, B., Nadella, S., Bullemer, B., Shalin, V., Sheth, A.: Enhancing crowd wisdom using measures of diversity computed from social media data. In: Proceedings of the International Conference on Web Intelligence (2017)
Smith, A., Gaur, M.: What’s my age?: Predicting twitter user’s age using influential friend network and DBpedia (2018). Arxiv preprint
Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: Encyclopedia of Database Systems. Springer, Berlin (2009)
Nguyen, D., Smith, N.A., Rosé, C.P.: Author age prediction from text using linear regression. In: Proceedings of the 5th ACL-HLT Workshop on Language Technology for Cultural Heritage, Social Sciences, and Humanities. Association for Computational Linguistics (2011)
Chen, C., Chang, Y., Ricanek, K., Wang, Y.: Face age estimation using model selection. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, pp. 93–99 (2010)
Culotta, A., Kumar Ravi, N., Cutler, J.: Predicting twitter user demographics using distant supervision from website traffic data. J. Artif. Intell. Res. 55, 389–408 (2016)
Zhang, J., Hu, X., Zhang, Y., Liu, H.: Your age is no secret: Inferring microbloggers’ ages via content and interaction analysis. In: Proceedings of the 10th International Conference on Web and Social Media, ICWSM 2016, pp. 476–485 (2016)
Nguyen, D., Gravel, R., Trieschnigg, D., Meder, T.: How old do you think i am?”: a study of language and age in twitter. In: ICWSM (2013)
Bamman, D., Eisenstein, J., Schnoebelen, T.: Gender in twitter: styles, stances, and social networks. In: CoRR (2012)
Li, W., Dickinson, M.: Gender prediction for Chinese social media data. In: Proceedings of Recent Advances in Natural Language Processing (2017), pp. 438–445
Li, L., Sun, M., Liu, Z.: Discriminating gender on Chinese microblog: a study of online behaviour, writing style and preferred vocabulary. In: 10th International Conference on Natural Computation (ICNC) (2014)
Volkova, S., Bell, E.: Identifying effective signals to predict deleted and suspended accounts on twitter across languages. In: ICWSM, Association for the Advancement of Artificial Intelligence, pp. 290–298 (2017)
Dickerson, J.P., Kagan, V., Subrahmanian, V.S.: Using sentiment to detect bots on twitter: are humans more opinionated than bots? In: ASONAM (2014)
Varol, O., Ferrara, E., Davis, C.A., Menczer, F., Flammini, A.: Online human-bot interactions: detection, estimation, and characterization. In: ICWSM (2017)
Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In: Proceedings of the 20th International Conference on World Wide Web, pp. 675–684. ACM, New York (2011)
Ross, J., Thirunarayan, K.: Features for ranking tweets based on credibility and newsworthiness. In: International Conference on Collaboration Technologies and Systems (2016)
Gupta, A., Kumaraguru, P., Castillo, C., Meier, P.: TweetCred: a real-time web-based system for assessing credibility of content on twitter. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8851, November 2014
Gupta, A., Kumaraguru, P.: Credibility ranking of tweets during high impact events. In: PSOSM (2012)
Gupta, A., Lamba, H., Kumaraguru, P., Joshi, A.: Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In: WWW (2013)
Weng, L., Menczer, F., Ahn, Y.-Y.: Predicting successful memes using network and community structure. In: IC, pp. 535–544 (2014)
Kobayashi, R., Lambiotte, R.: TiDeH: time-dependent Hawkes process for predicting retweet dynamics. In: ICWSM, pp. 191–200 (2016)
Tsur, O., Rappoport, A.: Don’t let me be #misunderstood: linguistically motivated algorithm for predicting the popularity of textual memes. In: ICWSM, Ninth International AAAI Conference on Web and Social Media, pp. 426–435 (2015)
Ruan, Y., Purohit, H., Fuhry, D., Parthasarathy, S., Sheth, A.P., Sheth, A.: Prediction of topic volume on twitter. In: 4th International ACM Conference on Web Science, pp. 397–402 (2012)
Pattisapu, N., Gupta, M., Kumaraguru, P., Varma, V.: Medical persona classification in social media. In: ASONAM (2017)
Gilani, Z., Kochmar, E., Crowcroft, J.: Classification of twitter accounts into automated agents and human users. In: ASONAM (2017)
Alowibdi, J.S., Buy, U.A., Yu, P.S., Stenneth, L.: Detecting deception in online social networks. In: ASONAM (2014)
Mahmud, J., Fei, G., Xu, A., Pal, A., Zhou, M.: Predicting attitude and actions of twitter users. In: Proceedings of the 21st International Conference on Intelligent User Interfaces - IUI’16, pp. 1–6. ACM, New York (2016)
Georgiev, P., Noulas, A., Mascolo, C.: Where businesses thrive: predicting the impact of the olympic games on local retailers through location-based services data, pp. 151–160. In: ICWSM (2014)
Yang, X., Mccreadie, R., Macdonald, C., Ounis, I.: Transfer learning for multi-language twitter election classification. In: ASONAM (2017)
Korolov, R., Lu, D., Wang, J., Zhou, G., Bonial, C., Voss, C., Kaplan, L., Wallace, W., Han, J., Ji, H.: On predicting social unrest using social media. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (2016)
Kallus, N.: Predicting crowd behavior with big public data. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 625–630. ACM, New York (2014)
Echeverria, J., Zhou, S.: Discovery, retrieval, and analysis of the ‘star wars’ botnet in twitter. In: ASONAM (2017)
Gao, W., Sebastiani, F.: Tweet sentiment: from classification to quantification. In: ASONAM (2015)
Hassan, A., Abbasi, A., Zeng, D.: Twitter sentiment analysis: a bootstrap ensemble framework. In: SocialCom (2013)
Kothari, A., Magdy, W., Darwish, K., Mourad, A., Taei, A.: Detecting comments on news articles in microblogs. In: ICWSM (2013)
Georgiou, T., Abbadi, A.E., Yan, X., George, J.: Mining complaints for traffic-jam estimation: a social sensor application. In: ASONAM (2015)
Aiswal, A.J., Peng, W., Sun, T.: Predicting time-sensitive user locations from social media. In: ASONAM (2013)
Rout, D., Preoiuc-Pietro, D., Bontcheva, K., Cohn, T.: Where’s @wally? A classification approach to geolocating users based on their social ties. In: 24th ACM Conference on Hypertext and Social Media, Paris (2013)
Rath, B., Gao, W., Ma, J., Srivastava, J.: From retweet to believability: utilizing trust to identify rumor spreaders on twitter. In: ASONAM (2017)
Bizid, I., Nayef, N., Boursier, P., Faiz, S., Morcos, J.: Prominent users detection during specific events by learning on-and off-topic features of user activities. In: ASONAM (2015)
Ferrara, E., Jafariasbagh, M., Varol, O., Qazvinian, V., Menczer, F., Flammini, A.: Clustering memes in social media. In: ASONAM (2013)
Yamamoto, S., Satoh, T.: Hierarchical estimation framework of multi-label classifying: a case of tweets classifying into real life aspects. In: ICWSM (2015)
Beykikhoshk, A., Arandjelovi, O., Phung, D., Venkatesh, S.: Data-mining twitter and the autism spectrum disorder: a pilot study. In: ASONAM (2014)
Yin, Z., Chen, Y., Fabbri, D., Sun, J., Malin, B.: #PrayForDad: learning the semantics behind why social media users disclose health information. In: ICWSM (2016)
Daniulaityte, R., Chen, L., Lamy, F.R., Carlson, R.G., Thirunarayan, K., Sheth, A.: ‘When ‘bad’ is ‘good’: identifying personal communication and sentiment in drug-related tweets. JMIR Public Health Surveill. (2016)
Hu, Y., Farnham, S., Talamadupula, K.: Predicting user engagement on twitter with real-world events. In: ICWSM (2015)
Kessler, J.S., Eckert, M., Clark, L., Nicolov Power, N.J.: The ICWSM 2010 JDPA sentiment corpus for the automotive domain. In: 4th International AAAI Conference on Weblogs and Social Media Data Workshop Challenge (ICWSM-DWC) (2010)
Covington, P., Adams, J., Sargin, E.: Deep neural networks for youtube recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems (2016)
Korpusik, M., Sakaki, S., Chen, F., Chen, Y.-Y.: Recurrent neural networks for customer purchase prediction on twitter. In: CBRecSys@ RecSys, pp. 47–50 (2016)
Tieleman, T., Hinton, G.: Divide the gradient by a running average of its recent magnitude. In: COURSERA: Neural Networks for Machine Learning (2012)
Acknowledgements
We are grateful to Amelie Gyrard, Mustafa Nural, Sanjaya Wijeratne, Shreyansh Bhatt, and Ankita Saxena for their assistance with their reviews and comments that greatly improved this book chapter.
We acknowledge partial support from the National Science Foundation (NSF) award CNS-1513721: “Context-Aware Harassment Detection on Social Media,” National Institutes of Health (NIH) award: MH105384-01A1: “Modeling Social Behavior for Healthcare Utilization in Depression,” NSF award EAR- 1520870 ‘Hazards SEES: Social and Physical Sensing Enabled Decision Support for Disaster Management and Response’, Community in Social Media: This work was supported by Army Research Office Grant No. W911NF-16-1-0300, National Institute on Drug Abuse (NIDA) Grant No. 5R01DA039454-02 Trending: Social media analysis to monitor cannabis and synthetic cannabinoid use. Any opinions, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF, NIH, NIDA, or Army Research Office.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Kursuncu, U., Gaur, M., Lokala, U., Thirunarayan, K., Sheth, A., Arpinar, I.B. (2019). Predictive Analysis on Twitter: Techniques and Applications. In: Agarwal, N., Dokoohaki, N., Tokdemir, S. (eds) Emerging Research Challenges and Opportunities in Computational Social Network Analysis and Mining. Lecture Notes in Social Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-94105-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-94105-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-94104-2
Online ISBN: 978-3-319-94105-9
eBook Packages: Social SciencesSocial Sciences (R0)