Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Journey to Computably Enumerable Structures (Tutorial Lectures)

  • Conference paper
  • First Online:
Sailing Routes in the World of Computation (CiE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10936))

Included in the following conference series:

Abstract

The tutorial focuses on computably enumerable (c.e.) structures. These structures form a class that properly extends the class of all computable structures. A computably enumerable (c.e.) structure is one that has computably enumerable equality relation E such that the atomic operations and relations of the structure are induced by c.e. operations and relations that respect E. Finitely presented universal algebras (e.g. groups, rings) are natural examples of c.e. structures. The first lecture gives an introduction to the theory, provides many examples, and proves several simple yet important results about c.e. structures. The second lecture addresses a particular problem about finitely presented expansions of universal algebras with an emphasis to semigroups and groups. The lecture is based on the interplay between important constructions, concepts, and results in computability (Post’s construction of simple sets), universal algebra (residual finiteness), and algebra (Golod-Shafarevich theorem). The third lecture is devoted to studying dependency of various properties of c.e. structures on their domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews, U., Sorbi, A.: Joins and meets in the structure of Ceers. arXiv:1802.09249 (2018, submitted)

  2. Andrews, U., Lempp, S., Miller, J., Ng, K., Mauro, L.S., Sorbi, A.: Universal computably enumerable equivalence relations. J. Symb. Log. 79(1), 60–88 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bergstra, J.A., Tucker, J.V.: Initial and final algebra semantics for data type specifications: two characterization theorems. SIAM J. Comput. 12, 366–387 (1983)

    Article  MathSciNet  Google Scholar 

  4. Bergstra, J.A., Tucker, J.V.: Algebraic specifications of computable and semi-computable DataTypes. Theor. Comput. Sci. 50, 137–181 (1987)

    Article  Google Scholar 

  5. Bernardi, C., Sorbi, A.: Classifying positive equivalence relations. J. Symb. Log. 48(3), 529–538 (1983)

    Article  MathSciNet  Google Scholar 

  6. Baumslag, G.: Wreath products and finitely presented groups. Math. Z. 75, 22–28 (1960/1961)

    Google Scholar 

  7. Ershov, Y.L.: Positive equivalence. Algebra Log. 10(6), 378–394 (1974)

    Article  MathSciNet  Google Scholar 

  8. Ershov, Y.L.: Theory of Numberings. Nauka, Moscow (1977). (in Russian)

    Google Scholar 

  9. Ershov, Y.L., Goncharov, S.S.: Constructive models. Transl. from the Russian. (English) Siberian School of Algebra and Logic, vol. xii, 293 p. Consultants Bureau, New York (2000)

    Google Scholar 

  10. Fokina, E., Khoussainov, B., Semukhin, P., Turetsky, D.: Linear orders realized by ce equivalence relations. J. Symb. Log. 81(2), 463–482 (2016)

    Article  MathSciNet  Google Scholar 

  11. Gao, S., Gerdes, P.: Computably enumerable equivalence relations. Stud. Logica 67(1), 27–59 (2001)

    Article  MathSciNet  Google Scholar 

  12. Gavryushkin, A., Khoussainov, B., Stephan, F.: Reducibilities among equivalence relations induced by recursively enumerable structures. Theoret. Comput. Sci. 612, 137–152 (2016)

    Article  MathSciNet  Google Scholar 

  13. Golod, E.S.: On nil-algebras and finitely approximable p-groups. Izv. Akad. Nauk SSSR Ser. Mat. 28, 273–276 (1964). (Russian)

    MathSciNet  Google Scholar 

  14. Golod, E.S., Shafarevich, I.R.: On the class field tower. Izv. Akad. Nauk SSSSR 28, 261–272 (1964). (in Russian)

    MathSciNet  MATH  Google Scholar 

  15. Gavruskin, A., Jain, S., Khoussainov, B., Stephan, F.: Graphs realised by R.E. equivalence relations. Ann. Pure Appl. Logic 165(7–8), 1263–1290 (2014)

    Article  MathSciNet  Google Scholar 

  16. Goncharov, S., Khoussainov, B.: Open problems in the Theory of Constructive Algebraic Systems, Contemporary Mathematics 257, Computability Theory and Its Applications (Current Trends and open Problems), pp. 145–170 (2000)

    Google Scholar 

  17. Gratzer, G.: Universal Algebra. Van Nostrand, Princeton (1968)

    MATH  Google Scholar 

  18. Hirschfeldt, D., Khoussainov, B.: On finitely presented expansions of computably enumerable semigroups. Algebra Log. 51(5), 435–444 (2012)

    Article  Google Scholar 

  19. Jockusch, C.J.: Semirecursive sets and positive reducibility. Trans. Am. Math. Soc. 131, 420–436 (1968)

    Article  MathSciNet  Google Scholar 

  20. Kassymov, N.K.: On finitely approximable and C.E. representable algebras. Algebra Log. 26(6) (1986)

    Google Scholar 

  21. Khalimulin, I., Khoussainov, B., Melnikov, A.: Limit-wise monotonicity and the degree spectra of structures. Proc. Am. Math. Soc. 141, 3275–3289 (2013)

    Article  Google Scholar 

  22. Khoussainov, B.: Quantifier free definability on infinite algebras. In: Proceedings of Logic in Computer Science Conference, LICS 2016, pp. 730–738 (2016)

    Google Scholar 

  23. Khoussainov, B.: Randomness, computability, and algebraic specifications. Ann. Pure Appl. Logic 91(1), 1–15 (1998)

    Article  MathSciNet  Google Scholar 

  24. Khoussainov, B., Miasnikov, A.: Finitely presented expansions of groups, semigroups, and algebras. Trans. Amer. Math. Soc. 366(3), 1455–1474 (2014)

    Article  MathSciNet  Google Scholar 

  25. Kasymov, N., Khoussainov, B.: Finitely generated enumerable and absolutely locally finite algebras. Vychislitelnye Sistemy 116, 3–15 (1986). (in Russian)

    MathSciNet  MATH  Google Scholar 

  26. Khoussainov, B., Lempp, S., Slaman, T.A.: Computably enumerable algebras, their expansions, and isomorphisms. Int. J. Algebra Comput. 15, 437–454 (2005)

    Article  MathSciNet  Google Scholar 

  27. Ershov, Y., Goncharov, S. (eds.): Logic Notebook (Open questions in Logic). Novosibirsk University Press (1989)

    Google Scholar 

  28. Lachlan, A.H.: A note on positive equivalence relations. Zeitschrift fĂ¼r Mathematische Logik und Grundlagen der Mathematik 33, 43–46 (1987)

    Article  MathSciNet  Google Scholar 

  29. Mal’cev, A.I.: Constructive algebras. I. Uspehi Mat. Nauk 16(3(99)), 3–60 (1961)

    Google Scholar 

  30. Maltsev, A.I.: Towards a theory of computable families of objects. Algebra i Logika 3(4), 5–31 (1963)

    Google Scholar 

  31. Miasnikov, A., Osin, D.: Algorithmically finite groups. J. Pure Appl. Algebra 215(11), 2789–2796 (2011)

    Article  MathSciNet  Google Scholar 

  32. Rabin, M.O.: Computable algebra, general theory and theory of computable fields. Trans. Amer. Math. Soc. 95, 341–360 (1960)

    MathSciNet  MATH  Google Scholar 

  33. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Berlin (1987)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bakh Khoussainov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khoussainov, B. (2018). A Journey to Computably Enumerable Structures (Tutorial Lectures). In: Manea, F., Miller, R., Nowotka, D. (eds) Sailing Routes in the World of Computation. CiE 2018. Lecture Notes in Computer Science(), vol 10936. Springer, Cham. https://doi.org/10.1007/978-3-319-94418-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94418-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94417-3

  • Online ISBN: 978-3-319-94418-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics