Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10979))

Included in the following conference series:

  • 688 Accesses

Abstract

The median of permutations problem consists in finding a consensus permutation of a given set of m permutations of size n. This consensus represent the “closest” permutation to the given set under the Kendall-tau distance. Since the complexity of this problem is still unknown for sets of 3 permutations, in the following work, we investigate this specific case and show an interesting link with the 3-Hitting Set problem.

Supported by NSERC through an Individual Discovery Grant (Hamel), by FRQNT through a Ph.D’s scholarship and Mitacs through a Globalink Research Award (Milosz).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.iro.umontreal.ca/~hamelsyl/M3P_3Cycles_3HS.html.

References

  1. Ailon, N.: Aggregation of partial rankings, \(p\)-ratings and top-\(m\) lists. Algorithmica 57(2), 284–300 (2010)

    Article  MathSciNet  Google Scholar 

  2. Ali, A., Meilă, M.: Experiments with Kemeny ranking: what works when? Math. Soc. Sci. 64, 28–40 (2012)

    Article  MathSciNet  Google Scholar 

  3. Bachmeier, G., Brandt, F., Geist, C., Harrenstein, P., Kardel, K., Peters, D., Seedig, H.G.: k-Majority Digraphs and the Hardness of Voting with a Constant Number of Voters arXiv: http://arxiv.org/abs/1704.06304v1 (2017)

  4. Betzler, N., Bredereck, R., Niedermeier, R.: Theoretical and empirical evaluation of data reduction for exact Kemeny rank aggregation. Auton. Agent. Multi-Agent Syst. 28, 721–748 (2014)

    Article  Google Scholar 

  5. Biedl, T., Brandenburg, F.J., Deng, X.: Crossings and permutations. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11618058_1

    Chapter  Google Scholar 

  6. Blin, G., Crochemore, M., Hamel, S., Vialette, S.: Median of an odd number of permutations. Pure Math. Appl. 21(2), 161–175 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Cohen-Boulakia, S., Denise, A., Hamel, S.: Using medians to generate consensus rankings for biological data. In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 73–90. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22351-8_5

    Chapter  Google Scholar 

  8. Condorcet, M.J.: Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. Imprimerie Royale, 191 p. (1785)

    Google Scholar 

  9. Conitzer, V., Davenport, A., Kalagnanam, J.: Improved bounds for computing Kemeny rankings. In: Proceedings of AAAI - Volume 1, pp. 620–626 (2006)

    Google Scholar 

  10. Davenport, A., Kalagnanam, J.: A computational study of the Kemeny rule for preference aggregation. In: Proceedings of the 19th National Conference on Artificial Intelligence, AAAI 2004, pp. 697–702 (2004)

    Google Scholar 

  11. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: proceedings of the 10th WWW, pp. 613–622 (2001)

    Google Scholar 

  12. Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D., Vee, E.: Comparing partial rankings. SIAM J. Discret. Math. 20(3), 628–648 (2006)

    Article  MathSciNet  Google Scholar 

  13. Guo, J., Niedermeier, R., Betzler, N., Fellows, M.R., Rosamond, F.A.: How similarity helps to efficiently compute Kemeny rankings. In: Proceedings of the 8th International Conference on Autonomous Agents and Multi-Agent Systems (2009)

    Google Scholar 

  14. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. IRSS, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-29

    Chapter  Google Scholar 

  15. Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament, Kemeny rank aggregation and betweenness tournament. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 3–14. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17517-6_3

    Chapter  MATH  Google Scholar 

  16. Kendall, M.: A new measure of rank correlation. Biometrika 30, 81–89 (1938)

    Article  Google Scholar 

  17. Young, H.P., Levenglick, A.: A consistent extension of Condorcet’s election principle. SIAM J. Appl. Math. 35(2), 285–300 (1978)

    Article  MathSciNet  Google Scholar 

  18. Mattei, N., Walsh, T.: PrefLib: a library for preferences http://www.preflib.org. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) ADT 2013. LNCS (LNAI), vol. 8176, pp. 259–270. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41575-3_20

    Chapter  Google Scholar 

  19. Milosz, R., Hamel, S.: Medians of permutations: building constraints. In: Govindarajan, S., Maheshwari, A. (eds.) CALDAM 2016. LNCS, vol. 9602, pp. 264–276. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29221-2_23

    Chapter  Google Scholar 

  20. Nishimura, N., Simjour, N.: Parameterized enumeration of (locally-) optimal aggregations. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 512–523. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40104-6_44

    Chapter  Google Scholar 

  21. Schalekamp, F., van Zuylen, A.: Rank aggregation: together we’re strong. In: Proceedings of the 11th SIAM Workshop on Algorithm Engineering and Experiments, ALENEX, pp. 38–51 (2009)

    Chapter  Google Scholar 

Download references

Acknowledgements

Thanks to Sarah Cohen-Boulakia, Alain Denise and Pierre Andrieu from the bioinformatic team of Laboratoire de Recherche Informatique of Université Paris-Sud for useful advices and thoughts. Thanks to Mitacs which made this collaboration possible through a Mitacs Globalink grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Hamel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Milosz, R., Hamel, S., Pierrot, A. (2018). Median of 3 Permutations, 3-Cycles and 3-Hitting Set Problem. In: Iliopoulos, C., Leong, H., Sung, WK. (eds) Combinatorial Algorithms. IWOCA 2018. Lecture Notes in Computer Science(), vol 10979. Springer, Cham. https://doi.org/10.1007/978-3-319-94667-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94667-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94666-5

  • Online ISBN: 978-3-319-94667-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics