Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Estimation of Pain in Sheep Using Computer Vision

  • Chapter
  • First Online:
Handbook of Pain and Palliative Care

Abstract

Assessing pain levels in animals is a crucial but time-consuming process in maintaining their welfare. Facial expressions in sheep are an efficient and reliable indicator of pain levels. We have extended techniques for recognising human facial expressions to analyse facial expressions of sheep, which can then facilitate automatic estimation of pain levels. In this chapter we describe our multilevel approach that starts with detection of sheep faces in an image, localisation of facial landmarks, normalisation and then extraction of facial features. Using machine learning methods, we then estimate the pain level from the detected change in the facial expressions. Our sheep face detection approach has been shown to be robust in detecting sheep faces in images containing many sheep, in different lighting conditions and with reasonable variation in viewpoints. We argue that our approach to automated pain level assessment can be generalised to other animals.

This chapter is based on the work described in: “Estimating sheep pain level using facial action unit detection”, Yiting Lu, Marwa Mahmoud, Peter Robinson. IEEE Conference on Automatic Face and Gesture Recognition, Washington DC, May 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Brown, L. G. (1992). A survey of image registration techniques (abstract). ACM Computing Surveys Archive, 24, 325–376.

    Article  Google Scholar 

  • Brunelli, R. (2009). Template matching techniques in computer vision: Theory and practice. Hoboken: Wiley.

    Book  Google Scholar 

  • Burgos-Artizzu, X. P., Perona, P., & Dollar, P. (2013). Robust face landmark estimation under occlusion. In ICCV.

    Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273.

    Google Scholar 

  • Dalal, N., Triggs, B., & Schmid, C. (2006). Human detection using oriented histograms of flow and appearance. In European Conference on Computer Vision.

    Google Scholar 

  • Dalla Costa, E., Minero, M., Lebelt, D., Stucke, D., Canali, E., et al. (2014). Development of the Horse Grimace Scale (HGS) as a pain assessment tool in horses undergoing routine castration. PLoS One, 9, e92281.

    Article  Google Scholar 

  • Darwin, C., & Prodger, P. (1998). The expression of the emotions in man and animals. New York: Oxford University Press.

    Google Scholar 

  • Davis E. K. (2009). Dlib-ml: A machine learning toolkit. Journal of Machine Learning Research, 10, 1755–1758.

    Google Scholar 

  • Davis E. K. (2015). Max-Margin Object Detection. CoRR abs/1502.00046. http://arxiv.org/abs/1502.00046.

  • Dolan, S., Field, L. C., & Nolan, A. M. (2000). The role of nitric oxide and prostaglandin signalling pathway is spinal nociceptive processing in chronic inflammation. Pain, 86(3), 311–320

    Article  Google Scholar 

  • Dolan, S., Kelly, J. G., Monteiro, A. M., & Nolan, A. M. (2003). Up-regulation of metabotropic glutamate receptor subtypes 3 and 5 in spinal cord in a clinical model of persistent inflammation and hyperalgesia. Pain, 106(3), 501–512

    Article  Google Scholar 

  • Dollar, P., Welinder, P., & Perona, P. (2010). Cascaded pose regression. In CVPR.

    Google Scholar 

  • Ekman, P., & Friesen, W. V. (1977). Manual for the facial action coding system. Palo Alto: Consulting Psychologists Press.

    Google Scholar 

  • Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2010). Object detection with discriminative trained part based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1627–1645

    Article  Google Scholar 

  • Flecknell, P. (2008). Analgesia from a veterinary perspective. British Journal of Anaesthesia, 101, 121–124.

    Article  Google Scholar 

  • Freitas-Magalhes, A. (2012). Microexpression and macroexpression. In V. S. Ramachandran (Ed.), Encyclopedia of human behavior. Oxford: Elsevier.

    Google Scholar 

  • Huxley, J., & Helen R. W. (2006). Cow based assessments Part 2: Rising restrictions and injuries associated with the lying surface. UK Vet Livestock, 11, 33–38.

    Article  Google Scholar 

  • Ison, S. H., & Rutherford, K. M. D. (2014). Attitudes of farmers and veterinarians towards pain and the use of pain relief in pigs. The Veterinary Journal, 202, 622–627.

    Article  Google Scholar 

  • Keating S. C. J., Thomas, A. A., Flecknell, P. A., & Leach, M. C. (2012). Evaluation of EMLA cream for preventing pain during tattooing of rabbits: Changes in physiological, behavioural and facial expression responses. PLoS One, 7, e44437.

    Article  Google Scholar 

  • King, D. E. (2009). Dlib-ml: A machine learning toolkit. JMLR, 10, 1755–1758.

    Google Scholar 

  • Langford, D. J., Bailey, A. L., Chanda, M. L., Clarke, S. E., Drummond, T. E., Echols, S., Glick, S., Ingrao, J., Klassen-Ross, T., Lacroix-Fralish, M. L., Matsumiya, L., Sorge, R. E., Sotocinal, S. G., Tabaka, J. M., Wong, D., van den Maagdenberg, A. M., Ferrari, M. D., Craig, K. D., & Mogil, J. S. (2010). Coding of facial expressions of pain in the laboratory mouse. Nature Methods, 7, 447–449.

    Article  Google Scholar 

  • Leach, M. C., Klaus, K., Miller, A. L., Scotto di Perrotolo, M., Sotocinal, S. G., & Flecknell, P. A. (2012). The assessment of post-vasectomy pain in mice using behaviour and the mouse grimace scale. PLoS One, 7, e35656.

    Article  Google Scholar 

  • Lizarraga, I., & Chambers, J. P. (2012). Use of analgesic drugs for pain management in sheep. New Zealand Veterinary Journal, 60, 87–94.

    Article  Google Scholar 

  • Matsumiya, L. C., et al. (2012). Using the Mouse Grimace Scale to reevaluate the efficacy of postoperative analgesics in laboratory mice. Journal of the American Association for Laboratory Animal Science, 51, 42–49.

    PubMed  PubMed Central  Google Scholar 

  • McLennan, K. M., et al. (2016). Development of a facial expression scale using footrot and mastitis as models of pain in sheep. Applied Animal Behaviour Science, 176, 19–26.

    Article  Google Scholar 

  • Reed, L. I., Sayette, M. A., & Cohn, J. F. (2007). Impact of depression on response to comedy: A dynamic facial coding analysis. Journal of Abnormal Psychology, 116, 804–809.

    Article  Google Scholar 

  • Sotocinal S. G., et al. (2011). The rat grimace scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions. Molecular Pain, 7, 1–10.

    Google Scholar 

  • Van Rysewyk, S. (2016). Nonverbal indicators of pain. Animal Sentience: An Interdisciplinary Journal on Animal Feeling, 1(3), 30.

    Google Scholar 

  • Viola, P. A., & Jones, M. J. (2001). Rapid object detection using a boosted cascade of simple features. In CVPR, Issue 1.

    Google Scholar 

  • Yang, H., Zhang, R., & Robinson, P. (2015). Human and sheep facial landmarks localisation by triplet interpolated features. IEEE Winter Conference on Applicants of Computer Vision (WACV), 2016.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the help of the Department of Veterinary medicine at University of Cambridge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marwa Mahmoud PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmoud, M., Lu, Y., Hou, X., McLennan, K., Robinson, P. (2018). Estimation of Pain in Sheep Using Computer Vision. In: Moore, R. (eds) Handbook of Pain and Palliative Care. Springer, Cham. https://doi.org/10.1007/978-3-319-95369-4_9

Download citation

Publish with us

Policies and ethics