Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Prediction of Protein-Protein Interaction Sites Combing Sequence Profile and Hydrophobic Information

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10954))

Included in the following conference series:

  • 2884 Accesses

Abstract

Identification of the residues in protein-protein interaction sites has an important impact in a lot of biological problems. We propose an extra-trees method to identify protein interaction sites in hetero-complexes by combing profile and hydrophobic information based on extra-trees. The efficiency and the effectiveness of our proposed approach are verified by its better prediction performance compared with other methods. The experiment is performed on the 1250 non-redundant protein chains. Without using any structure data, we only use profile and a binary profile hydrophobic attribute as input vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clackson, T., Wells, J.A.: A hot spot of binding energy in a hormone-receptor interface. Science 267, 383–386 (1995)

    Article  Google Scholar 

  2. Chothia, C., Janin, J.: Principles of protein-protein recognition. Nature 256(5520), 705 (1975)

    Article  Google Scholar 

  3. Kortemme, T., Baker, D.: A simple physical model for binding energy hot spots in protein-protein complexes. Proc. Natl. Acad. Sci. U.S.A. 99, 14116–14121 (2002)

    Article  Google Scholar 

  4. Keskin, O., Ma, B., Nussinov, R.: Hot regions in protein-protein interactions: The organization and contribution of structurally conserved hot spot residues. J. Mol. Biol. 345, 1281–1294 (2005)

    Article  Google Scholar 

  5. Chelliah, V., Chen, L., Blundell, T.L., Lovell, S.C.: Distinguishing structural and functional restraints in evolution in order to identify interaction sites. J. Mol. Biol. 342, 1487–1504 (2004)

    Article  Google Scholar 

  6. Williams, N.E.: Immunoprecipitation procedures. Meth. Cell Biol. 62, 449–453 (1999)

    Article  Google Scholar 

  7. Wells, J.A.: Systematic mutational analyses of protein-protein interfaces. Meth. Enzymol. 202, 390–411 (1991)

    Article  Google Scholar 

  8. Fernandezrecio, J.: Prediction of protein binding sites and hot spots. Wiley Interdisc. Rev. Comput. Mol. Sci. 1(5), 680–698 (2011)

    Article  Google Scholar 

  9. Esmaielbeiki, R., Krawczyk, K., Knapp, B., Nebel, J.C., Deane, C.M.: Progress and challenges in predicting protein interfaces. Brief Bioinf. 17, 117–131 (2016)

    Article  Google Scholar 

  10. Lise, S., Buchan, D., Pontil, M., Jones, D.T.: Predictions of hot spot residues at protein-protein interfaces using support vector machines. PLoS ONE 6, e16774 (2011)

    Article  Google Scholar 

  11. Lise, S., Archambeau, C., Pontil, M., Jones, D.T.: Prediction of hot spot residues at protein-protein interfaces by combining machine learning and energy-based methods. BMC Bioinf. 10, 365 (2009)

    Article  Google Scholar 

  12. Wang, L., Liu, Z.P., Zhang, X.S., Chen, L.: Prediction of hot spots in protein inter faces using a random forest model with hybrid features. Protein Eng. Des. Sel. 25, 119–126 (2012)

    Article  Google Scholar 

  13. Wang, B., Chen, P., Zhang, J.: Protein interface residues prediction based on amino acid properties only. In: Huang, D.-S., Gan, Y., Premaratne, P., Han, K. (eds.) ICIC 2011. LNCS, vol. 6840, pp. 448–452. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24553-4_59

    Chapter  Google Scholar 

  14. Chen, P., Wong, L., Li, J.: Detection of outlier residues for improving interface pre diction in protein heterocomplexes. IEEE/ACM Trans. Comput. Biol. Bioinf. 9, 1155–1165 (2012)

    Article  Google Scholar 

  15. Wang, B., Huang, D.S., Jiang, C.: A new strategy for protein interface identification using manifold learning method. IEEE Trans. Nanobiosci. 13(2), 118–123 (2014)

    Article  Google Scholar 

  16. Chen, H., Zhou, H.: Prediction of interface residues in protein-protein complexes by a consensus neural network method: test against NMR data. Proteins 61, 21–26 (2005)

    Article  Google Scholar 

  17. Wang, B., Chen, P., Zhang, J., et al.: Inferring protein-protein interactions using a hybrid genetic algorithm/support vector machine method. Protein Pept. Lett. 17(9), 1079 (2010)

    Article  Google Scholar 

  18. Bystroff, C., Krogh, A.: Hidden Markov models for prediction of protein features. In: Zaki, M.J., Bystroff, C. (eds.) Protein Structure Prediction. Methods in Molecular Biology, vol. 413, pp. 173–198. Humana Press, Totowa (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, L., Chen, F., Zhou, N., Chen, P., Zhang, J., Wang, B. (2018). Prediction of Protein-Protein Interaction Sites Combing Sequence Profile and Hydrophobic Information. In: Huang, DS., Bevilacqua, V., Premaratne, P., Gupta, P. (eds) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer Science(), vol 10954. Springer, Cham. https://doi.org/10.1007/978-3-319-95930-6_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95930-6_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95929-0

  • Online ISBN: 978-3-319-95930-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics