Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Contrast Enhancement of RGB Color Images by Histogram Equalization of Color Vectors’ Intensities

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10956))

Included in the following conference series:

Abstract

The histogram equalization (HE) is a technique developed for image contrast enhancement of grayscale images. For RGB (Red, Green, Blue) color images, the HE is usually applied in the color channels separately; due to correlation between the color channels, the chromaticity of colors is modified. In order to overcome this problem, the colors of the image are mapped to different color spaces where the chromaticity and the intensity of colors are decoupled; then, the HE is applied in the intensity channel. Mapping colors between different color spaces may involve a huge computational load, because the mathematical operations are not linear. In this paper we present a proposal for contrast enhancement of RGB color images, without mapping the colors to different color spaces, where the HE is applied to the intensities of the color vectors. We show that the images obtained with our proposal are very similar to the images processed in the HSV (Hue, Saturation, Value) and L*a*b* color spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/.

References

  1. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  2. Jahanirad, M., Wahab, A.W.A., Anuar, N.B.: An evolution of image source camera attribution approaches. Forensic Sci. Int. 262, 242–275 (2016)

    Article  Google Scholar 

  3. Nnolim, U.A.: An adaptive RGB colour enhancement formulation for logarithmic image processing-based algorithms. Opt. Int. J. Light Electron Opt. 154, 192–215 (2018)

    Article  Google Scholar 

  4. Jun, H., Inoue, K., Hara, K., Urahama, K.: Saturation improvement in hue-preserving color image enhancement without gamut problem. ICT Express (2017). https://doi.org/10.1016/j.icte.2017.07.003

  5. Qian, X., Han, L., Wang, Y., Wang, B.: Color contrast enhancement for color night vision based on color mapping. Infrared Phys. Technol. 57, 36–41 (2013)

    Article  Google Scholar 

  6. Zhang, H., Friits, J.E., Goldman, S.A.: Image segmentation evaluation: a survey of unsupervised methods. Comput. Vis. Image Underst. 110(2), 260–280 (2008)

    Article  Google Scholar 

  7. Agarwal, M., Mahajan, R.: Medical image contrast enhancement using range limited weighted histogram equalization. Procedia Comput. Sci. 125, 149–156 (2018)

    Article  Google Scholar 

  8. Rajinikanth, V., Couceiro, M.S.: RGB histogram based color image segmentation using firefly algorithm. Procedia Comput. Sci. 46, 1449–1457 (2015)

    Article  Google Scholar 

  9. Pare, S., Kumar, A., Bajaj, V., Singh, G.K.: A multilevel color image segmentation technique based on cuckoo search algorithm and energy curve. Appl. Soft Comput. 47, 76–102 (2016)

    Article  Google Scholar 

  10. Zhou, Z., Sang, N., Hu, X.: Global brightness and local contrast adaptive enhancement for low illumination color image. Opt. Int. J. Light Electron Opt. 125(6), 1795–1799 (2014)

    Article  Google Scholar 

  11. Xiao, B., Tang, H., Jiang, Y., Li, W., Wang, G.: Brightness and contrast controllable image enhancement based on histogram specification. Neurocomputing 275, 2798–2809 (2018)

    Article  Google Scholar 

  12. Tang, J.R., Isa, N.A.M.: Bi-histogram equalization using modified histogram bins. Appl. Soft Comput. 55, 31–43 (2017)

    Article  Google Scholar 

  13. Ong, S., Yeo, N., Lee, K., Venkatesh, Y., Cao, D.: Segmentation of color images using a two-stage self-organizing network. Image Vis. Comput. 20(4), 279–289 (2002)

    Article  Google Scholar 

  14. Paschos, G.: Perceptually uniform color spaces for color texture analysis: an empirical evaluation. IEEE Trans. Image Process. 10(6), 932–937 (2001)

    Article  Google Scholar 

  15. Rong, Z., Li, Z., Dong-nan, L.: Study of color heritage image enhancement algorithms based on histogram equalization. Opt. Int. J. Light Electron Opt. 126(24), 5665–5667 (2015)

    Article  Google Scholar 

  16. Li, X., Fang, M., Zhang, J.J., Wu, J.: Learning coupled classifiers with RGB images for RGB-D object recognition. Pattern Recognit. 61, 433–446 (2017)

    Article  Google Scholar 

  17. Grupt, B., Agarwal T.K.: New contrast enhancement approach for dark images with non-uniform illumination. Comput. Electr. Eng. (2017). https://doi.org/10.1016/j.compeleceng.2017.09.007

  18. Ghani, A.S.A., Isa, N.A.M.: Automatic system for improving under water image contrast and color through recursive adaptive histogram modification. Comput. Electron. Agric. 141, 181–195 (2017)

    Article  Google Scholar 

  19. Gu, Z., Ju, M., Zhang, D.: A novel retinex image enhancement approach via brightness channel prior and change of detail prior. Pattern Recognit. Image Anal. 27(2), 234–242 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid García-Lamont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García-Lamont, F., Cervantes, J., López-Chau, A., Ruiz, S. (2018). Contrast Enhancement of RGB Color Images by Histogram Equalization of Color Vectors’ Intensities. In: Huang, DS., Gromiha, M., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science(), vol 10956. Springer, Cham. https://doi.org/10.1007/978-3-319-95957-3_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95957-3_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95956-6

  • Online ISBN: 978-3-319-95957-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics