Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Bounded Pitch Inequalities for the Min-Knapsack Polytope

  • Conference paper
  • First Online:
Combinatorial Optimization (ISCO 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10856))

Included in the following conference series:

Abstract

In the min-knapsack problem one aims at choosing a set of objects with minimum total cost and total profit above a given threshold. In this paper, we study a class of valid inequalities for min-knapsack known as bounded pitch inequalities, which generalize the well-known unweighted cover inequalities. While separating over pitch-1 inequalities is NP-Hard, we show that approximate separation over the set of pitch-1 and pitch-2 inequalities can be done in polynomial time. We also investigate integrality gaps of linear relaxations for min-knapsack when these inequalities are added. Among other results, we show that, for any fixed t, the t-th CG closure of the natural linear relaxation has the unbounded integrality gap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that \(c \in \mathbb {R}_+^n, \ p \in \mathbb {R}_+^n\) and the constraint is scaled so that the right-hand side is 1.

References

  1. Bazzi, A., Fiorini, S., Huang, S., Svensson, O.: Small extended formulation for knapsack cover inequalities from monotone circuits. In: Proceedings of SODA 2017, pp. 2326–2341 (2017)

    Google Scholar 

  2. Bienstock, D.: Approximate formulations for 0–1 knapsack sets. Oper. Res. Lett. 36(3), 317–320 (2008)

    Article  MathSciNet  Google Scholar 

  3. Bienstock, D., Zuckerberg, M.: Approximate fixed-rank closures of covering problems. Math. Program. 105(1), 9–27 (2006)

    Article  MathSciNet  Google Scholar 

  4. Carr, R.D., Fleischer, L.K., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated network design and covering problems. In: Proceedings of SODA 2000, pp. 106–115 (2000)

    Google Scholar 

  5. Conforti, M., Cornuejols, G., Zambelli, G.: Integer Programming. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-319-11008-0

    Book  MATH  Google Scholar 

  6. Dudycz, S., Moldenhauer, C.: Approximated extended formulations for the knapsack cover problem. Technical report, EPFL (2015)

    Google Scholar 

  7. Faenza, Y., Malinović, I., Mastrolilli, M., Svensson, O.: On bounded pitch inequalities for the min-knapsack polytope. arXiv preprint arXiv:1801.08850 (2018)

  8. Ferreira, C.E.: On combinatorial optimization problems arising in computer system design. Ph.D. thesis, Technical University of Berlin, Germany (1994)

    Google Scholar 

  9. Fiorini, S., Huynh, T., Weltge, S.: Strengthening convex relaxations of 0/1-sets using boolean formulas. arXiv preprint arXiv:1711.01358 (2017)

  10. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, New York (1988). https://doi.org/10.1007/978-3-642-78240-4

    Book  MATH  Google Scholar 

  11. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22(4), 463–468 (1975)

    Article  MathSciNet  Google Scholar 

  12. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

  13. Kurpisz, A., Leppänen, S., Mastrolilli, M.: On the hardest problem formulations for the 0/1 lasserre hierarchy. Math. Oper. Res. 42(1), 135–143 (2017)

    Article  MathSciNet  Google Scholar 

  14. Lawler, E.L.: Fast approximation algorithms for knapsack problems. Math. Oper. Res. 4(4), 339–356 (1979)

    Article  MathSciNet  Google Scholar 

  15. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1988)

    Google Scholar 

Download references

Acknowledgments

Supported by the Swiss National Science Foundation (SNSF) project 200020-169022 “Lift and Project Methods for Machine Scheduling Through Theory and Experiments”. Some of the work was done when the second and the third author visited the IEOR department of Columbia University, partially funded by a gift of the SNSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Malinović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faenza, Y., Malinović, I., Mastrolilli, M., Svensson, O. (2018). On Bounded Pitch Inequalities for the Min-Knapsack Polytope. In: Lee, J., Rinaldi, G., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2018. Lecture Notes in Computer Science(), vol 10856. Springer, Cham. https://doi.org/10.1007/978-3-319-96151-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96151-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96150-7

  • Online ISBN: 978-3-319-96151-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics