Abstract
Population diversity plays an important role in the evolutionary dynamics of genetic programming (GP). In this paper we use structural and semantic similarity measures to investigate the evolution of diversity in three GP algorithmic flavors: standard GP, offspring selection GP (OS-GP), and age-layered population structure GP (ALPS-GP). Empirical measurements on two symbolic regression benchmark problems reveal important differences between the dynamics of the tested configurations. In standard GP, after an initial decrease, population diversity remains almost constant until the end of the run. The higher variance of the phenotypic similarity values suggests that small changes on individual genotypes have significant effects on their corresponding phenotypes. By contrast, strict offspring selection within the OS-GP algorithm causes a significantly more pronounced diversity loss at both genotypic and, in particular, phenotypic levels. The pressure for adaptive change increases phenotypic robustness in the face of genotypic perturbations, leading to less genotypic variability on the one hand, and very low phenotypic diversity on the other hand. Finally, the evolution of similarities in ALPS-GP follows a periodic pattern marked by the time interval when the bottom layer is reinitialized with new individuals. This pattern is easily noticed in the lower layers characterized by shorter migration intervals, and becomes less and less noticeable on the upper layers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic algorithms and genetic programming: modern concepts and practical applications. In: Numerical Insights. CRC Press, Singapore (2009). http://gagp2009.heuristiclab.com/
Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: an analysis of measures and correlation with fitness. IEEE Trans. Evol. Comput. 8(1), 47–62 (2004). https://doi.org/10.1109/TEVC.2003.819263. http://www.cs.nott.ac.uk/~smg/research/publications/gustafson-ieee2004-preprint.pdf
Draper, N.R., Smith, H.: Applied Regression Analysis, 3rd edn. Wiley, Hoboken (1998)
Hornby, G.S.: Alps: the age-layered population structure for reducing the problem of premature convergence. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, GECCO ’06, pp. 815–822. ACM, New York (2006). https://doi.org/10.1145/1143997.1144142. http://doi.acm.org/10.1145/1143997.1144142
Hornby, G.S.: A steady-state version of the age-layered population structure EA. In: Genetic Programming Theory and Practice VII, pp. 87–102. Springer, Boston (2010)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Luke, S.: Two fast tree-creation algorithms for genetic programming. IEEE Trans. Evol. Comput. 4(3), 274–283 (2000)
Poli, R.: A simple but theoretically-motivated method to control bloat in genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.) Genetic Programming, Proceedings of EuroGP’2003, LNCS, vol. 2610, pp. 204–217. Springer, Essex (2003). https://doi.org/10.1007/3-540-36599-0_19. http://www.springerlink.com/openurl.asp?genre=article&issn=0302-9743&volume=2610&spage=204
Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. ACM, New York (2008). Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk
Schaper, S., Louis, A.A.: The arrival of the frequent: how bias in genotype-phenotype maps can steer populations to local optima. PLoS One 9(2), e86,635 (2014). https://doi.org/10.1371/journal.pone.0086635
Valiente, G.: An efficient bottom-up distance between trees. In: Proceedings of the 8th International Symposium of String Processing and Information Retrieval, pp. 212–219. IEEE, Piscataway (2001)
Vladislavleva, E.J., Smits, G.F., Den Hertog, D.: Order of nonlinearity as a complexity measure for models generated by symbolic regression via Pareto genetic programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2009)
Wagner, S., Affenzeller, M.: SexualGA: gender-specific selection for genetic algorithms. In: Callaos, N., Lesso, W., Hansen, E. (eds.) Proceedings of the 9th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI) 2005, vol. 4, pp. 76–81. International Institute of Informatics and Systemics, Winter Garden (2005)
Wagner, S., Kronberger, G., Beham, A., Kommenda, M., Scheibenpflug, A., Pitzer, E., Vonolfen, S., Kofler, M., Winkler, S.M., Dorfer, V., Affenzeller, M.: Architecture and design of the heuristiclab optimization environment. Adv. Methods Appl. Comput. Intell. Top. Intell. Eng. Inform. 6, 197–261 (2013)
White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G., Jaskowski, W., O’Reilly, U.M., Luke, S.: Better GP benchmarks: community survey results and proposals. Genet. Program Evolvable Mach. 14(1), 3–29 (2013). https://doi.org/10.1007/s10710-012-9177-2. http://gpbenchmarks.org/wp-content/uploads/2014/09/GP-Benchmarks-GPEM-2013-preprint-correction-v2.pdf
Winkler, S.M.: Structural versus evaluation based solutions similarity in genetic programming based system identification. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) Nature Inspired Cooperative Strategies for Optimization, NICSO 2010. Studies in Computational Intelligence, vol. 284, pp. 269–282. Springer, Granada (2010). https://doi.org/10.1007/978-3-642-12538-6_23
Acknowledgements
The work described in this paper was done within the COMET Project Heuristic Optimization in Production and Logistics (HOPL), #843532 funded by the Austrian Research Promotion Agency (FFG).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Winkler, S.M., Affenzeller, M., Burlacu, B., Kronberger, G., Kommenda, M., Fleck, P. (2018). Similarity-Based Analysis of Population Dynamics in Genetic Programming Performing Symbolic Regression. In: Riolo, R., Worzel, B., Goldman, B., Tozier, B. (eds) Genetic Programming Theory and Practice XIV. Genetic and Evolutionary Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-97088-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-97088-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97087-5
Online ISBN: 978-3-319-97088-2
eBook Packages: Computer ScienceComputer Science (R0)