Abstract
The General Video Game Playing Competition (GVGAI) defines a challenge of creating controllers for general video game playing, a testbed—as it were—for examining the issue of artificial general intelligence. We develop herein a game controller that mimics human learning behavior, focusing on the ability to generalize from experience and diminish learning time as new games present themselves. We use genetic programming to evolve hyper-heuristic-based general players. Our results show the effectiveness of evolution in meeting the generality challenge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arfaee, S.J., Zilles, S., Holte, R.C.: Bootstrap learning of heuristic functions. In: Proceedings of the 3rd International Symposium on Combinatorial Search (SoCS2010), pp. 52–59 (2010)
Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)
Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for timetabling and rostering. J. Heuristics 9(6), 451–470 (2003). https://doi.org/10.1023/B:HEUR.0000012446.94732.b6
Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.: A classification of hyper-heuristic approaches. In: Gendreau, M., Potvin, J. (eds.) Handbook of Meta-Heuristics, 2nd edn., pp. 449–468. Springer, Boston (2010)
Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.: A genetic programming hyper-heuristic approach for evolving 2-D strip packing heuristics. IEEE Trans. Evol. Comput. 14(6), 942–958 (2010). https://doi.org/10.1109/TEVC.2010.2041061
Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.: Automating the packing heuristic design process with genetic programming. Evol. Comput. 20(1), 63–89 (2012). https://doi.org/10.1162/EVCO_a_00044
Cowling, P.I., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit. In: Burke, E.K., Erben, W. (eds.) PATAT 2000: Practice and Theory of Automated Timetabling III. Lecture Notes in Computer Science, vol. 2079, pp. 176–190. Springer, Berlin (2000). https://doi.org/10.1007/3-540-44629-X_11
Elyasaf, A., Zaritsky, Y., Hauptman, A., Sipper, M.: Evolving solvers for FreeCell and the sliding-tile puzzle. In: Borrajo, D., Likhachev, M., López, C.L. (eds.) Proceedings of the Fourth Annual Symposium on Combinatorial Search, SoCS 2011, Castell de Cardona, Barcelona, Spain, July 15–16, 2011. AAAI Press, Palo Alto (2011). http://www.aaai.org/ocs/index.php/SOCS/SOCS11/paper/view/4018
Elyasaf, A., Hauptman, A., Sipper, M.: Evolutionary design of FreeCell solvers. IEEE Trans. Comput. Intell. AI Games 4(4), 270–281 (2012). https://doi.org/10.1109/TCIAIG.2012.2210423. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6249736
Elyasaf, A., Vaks, P., Milo, N., Sipper, M., Ziv-Ukelson, M.: Learning heuristics for mining RNA sequence-structure motifs. In: Genetic Programming Theory and Practice XIII (GPTP 2015). Springer, Cham (2015)
Fawcett, C., Karpas, E., Helmert, M., Roger, G., Hoos, H.: Fd-autotune: domain-specific configuration using fast-downward. In: Proceedings of ICAPS-PAL 2011 (2011)
Hauptman, A., Elyasaf, A., Sipper, M., Karmon, A.: GP-rush: using genetic programming to evolve solvers for the Rush Hour puzzle. In: GECCO’09: Proceedings of 11th Annual Conference on Genetic and Evolutionary Computation Conference, pp. 955–962. ACM, New York (2009). https://doi.org/10.1145/1569901.1570032. http://dl.acm.org/citation.cfm?id=1570032
Jones, J.: Abstract syntax tree implementation idioms. In: Proceedings of the 10th Conference on Pattern Languages of Programs (plop2003), pp. 1–10 (2003)
Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1), 99–134 (1998)
Levine, J., Westerberg, H., Galea, M., Humphreys, D.: Evolutionary-based learning of generalised policies for AI planning domains. In: Rothlauf, F. (ed.) Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO 2009), pp. 1195–1202. ACM, New York (2009)
Park, H., Kim, K.J.: MCTS with influence map for general video game playing. In: IEEE Conference on Computational Intelligence and Games (CIG), 2015, pp. 534–535. IEEE, Piscataway (2015)
Perez, D., Samothrakis, S., Lucas, S.: Knowledge-based fast evolutionary MCTS for general video game playing. In: IEEE Conference on Computational Intelligence and Games (CIG), 2014, pp. 1–8. IEEE, Piscataway (2014)
Perez, D., Samothrakis, S., Togelius, J., Schaul, T., Lucas, S., Couëtoux, A., Lee, J., Lim, C.U., Thompson, T.: The 2014 general video game playing competition. IEEE Trans. Comput. Intell. AI Games 8, 229–243 (2015)
Pohl, I.: Heuristic search viewed as path finding in a graph. Artif. Intell. 1(3), 193–204 (1970)
Samadi, M., Felner, A., Schaeffer, J.: Learning from multiple heuristics. In: Fox, D., Gomes, C.P. (eds.) Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI 2008), pp. 357–362. AAAI Press, Palo Alto (2008)
Yoon, S.W., Fern, A., Givan, R.: Learning control knowledge for forward search planning. J. Mach. Learn. Res. 9, 683–718 (2008). http://doi.acm.org/10.1145/1390681.1390705
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Azaria, I., Elyasaf, A., Sipper, M. (2018). Evolving Artificial General Intelligence for Video Game Controllers. In: Riolo, R., Worzel, B., Goldman, B., Tozier, B. (eds) Genetic Programming Theory and Practice XIV. Genetic and Evolutionary Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-97088-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-97088-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97087-5
Online ISBN: 978-3-319-97088-2
eBook Packages: Computer ScienceComputer Science (R0)