Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Labeling Information Enhancement for Multi-label Learning with Low-Rank Subspace

  • Conference paper
  • First Online:
PRICAI 2018: Trends in Artificial Intelligence (PRICAI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11012))

Included in the following conference series:

Abstract

In multi-label learning, each training example is represented by an instance while associated with multiple class labels simultaneously. Most existing approaches make use of multi-label training examples by utilizing the logical labeling information, i.e., one class label is either fully relevant or irrelevant to the instance. In this paper, a novel multi-label learning approach is proposed which aims to enhance the labeling information by extending logical labels into numerical labels. Firstly, a stacked matrix is constructed where the feature and the logical label matrix are placed vertically. Secondly, the labeling information is enhanced by leveraging the underlying low-rank structure in the stacked matrix. Thirdly, the multi-label predictive model is induced by the learning procedure from training examples with numerical labels. Extensive comparative studies clearly validate the advantage of the proposed method against the state-of-the-art multi-label learning approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The data sets can be downloaded from: http://meka.sourceforge.net/#datasets and http://mulan.sourceforge.net/datasets.html.

References

  1. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-09823-4_34

    Chapter  Google Scholar 

  2. Zhang, M.-L., Zhou, Z.-H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)

    Article  Google Scholar 

  3. Rubin, T., Chambers, A., Smyth, P., Steyvers, M.: Statistical topic models for multi-label document classification. Mach. Learn. 88(1–2), 157–208 (2012)

    Article  MathSciNet  Google Scholar 

  4. Yang, B., Sun, J.-T., Wang, T., Chen, Z.: Effective multilabel active learning for text classification. In: Proceedings of 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, pp. 917–926 (2009)

    Google Scholar 

  5. Cabral, R., Torre, F., Costeira, J., Bernardino, A.: Matrix completion for multi-label image classification. In: Proceedings of 24th International Conference on Neural Information Processing Systems, Granada, Spain, pp. 190–198 (2011)

    Google Scholar 

  6. Wang, H., Huang, H., Ding, C.: Image annotation using multi-label correlated green’s function. In: Proceedings of 12th IEEE International Conference on Computer Vision, Kyoto, Japan, pp. 2029–2034 (2009)

    Google Scholar 

  7. Lo, H.-Y., Wang, J.-C., Wang, H.-M., Lin, S.-D.: Costsensitive multi-label learning for audio tag annotation and retrieval. IEEE Trans. Multimedia 13(3), 518–529 (2011)

    Article  Google Scholar 

  8. Sanden, C., Zhang, J.-Z.: Enhancing multi-label music genre classification through ensemble techniques. In: Proceedings of 34th ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, pp. 705–714 (2011)

    Google Scholar 

  9. Wang, J., Zhao, Y., Wu, X., Hua, X.-S.: A transductive multi-label learning approach for video concept detection. Pattern Recogn. 44(10–11), 2274–2286 (2011)

    Article  Google Scholar 

  10. Hou, P., Geng, X., Zhang, M.-L.: Multi-label manifold learning. In: Proceedings of 30th AAAI Conference on Artificial Intelligence, Phoenix, AZ, pp. 1680–1686 (2016)

    Google Scholar 

  11. Liu, G., Lin, Z.-C., Yang, S.-C., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intel. 35(1), 171–184 (2013)

    Article  Google Scholar 

  12. Eriksson, B., Balzano, L., Nowak, R.: High-rank matrix completion. In: Proceedings of 15th International Conference on Artificial Intelligence Statistics, La Palma, Canary Islands, vol. 20, pp. 373–381 (2012)

    Google Scholar 

  13. Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)

    Article  Google Scholar 

  14. Zhang, M.-L., Zhou, Z.-H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Article  Google Scholar 

  15. Elisseeff, A., Weston, J.: A kernel method for multilabelled classification. In: Proceedings of Advance Neural Information Processing Systems 14, Vancouver, Canada, pp. 681–687 (2001)

    Google Scholar 

  16. Frnkranz, J., Hllermeier, E., Menca, E., Brinker, K.: Multilabel classification via calibrated label ranking. Mach. Learn. 73(2), 133–153 (2008)

    Article  Google Scholar 

  17. Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2011)

    Article  Google Scholar 

  18. Tai, F., Lin, H.-T.: Multilabel classification with principal label space transformation. Neural Comput. 24(9), 2508–2542 (2012)

    Article  MathSciNet  Google Scholar 

  19. Sun, L., Ji, S., Ye, J.: Canonical correlation analysis for multilabel classification: a least-squares formulation, extensions, and analysis. IEEE Trans. Pattern Anal. Mach. Intel. 33(1), 194–200 (2011)

    Article  Google Scholar 

  20. Li, Y.-K., Zhang, M.-L., Geng, X.: Leveraging implicit relative labeling-importance information for effective multi-label learning. In: Proceedings of 15th IEEE International Conference on Data Mining, Atlantic City, NJ, pp. 251–260 (2015)

    Google Scholar 

  21. Ma, S.-Q., Goldfarb, D., Chen, L.-F.: Fixed point and bregman iterative methods for matrix rank minimization. Math. Programm. 128(1–2), 321–353 (2011)

    Article  MathSciNet  Google Scholar 

  22. Pérez-Cruz, F., Vázquez, A., Alarcón-Diana, P., Artés-Rodríguez, A.: An IRWLS procedure for SVR. In: 10th European Conference on Signal Processing, Tampere, Finland, pp. 1–4 (2000)

    Google Scholar 

  23. Schlkopf, B., Smola, A.: Learning with Kernels. The MIT Press, Berlin (2001)

    Google Scholar 

  24. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333–359 (2011)

    Article  MathSciNet  Google Scholar 

  25. Tsoumakas, G., Katakis, I., Vlahavas, I.: Random klabelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research & Development Plan of China (No. 2017YFB1002801), the National Science Foundation of China (61622203), the Jiangsu Natural Science Funds for Distinguished Young Scholar (BK20140022), the Collaborative Innovation Center of Novel Software Technology and Industrialization, and the Collaborative Innovation Center of Wireless Communications Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tao, A., Xu, N., Geng, X. (2018). Labeling Information Enhancement for Multi-label Learning with Low-Rank Subspace. In: Geng, X., Kang, BH. (eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018. Lecture Notes in Computer Science(), vol 11012. Springer, Cham. https://doi.org/10.1007/978-3-319-97304-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97304-3_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97303-6

  • Online ISBN: 978-3-319-97304-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics