Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Data-Driven Modeling of a Coupled Electric Drives System Using Regularized Basis Function Volterra Kernels

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10984))

Included in the following conference series:

  • 3061 Accesses

Abstract

In this paper, we consider the problem of data-driven modeling for systems containing nonlinear sensors. The issue is explored via an established nonlinear benchmark in the system identification community, referred to as the “coupled electric drives.” In the benchmark system, nonlinearity emerges in the pulse transducer used to measure the angular velocity of a pulley, which is invariant to the direction of rotation. In order to model the nonlinear dynamics without the use of extensive prior knowledge, we estimate a nonparametric Volterra series model using a regularized basis function approach. While the Volterra series is typically an impractical modeling tool due to the large number of parameters required, we obtain accurate models using only a short estimation dataset, by directly regularizing the basis function expansions of each Volterra kernel in a Bayesian framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Birpoutsoukis, G., Marconato, A., Lataire, J., Schoukens, J.: Regularized nonparametric Volterra kernel estimation. Automatica 82, 324–327 (2017)

    Article  MathSciNet  Google Scholar 

  2. Boyd, S., Chua, L.O.: Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans. Circ. Syst. 32(11), 1150–1161 (1985)

    Article  MathSciNet  Google Scholar 

  3. Campello, R., Favier, G., do Amaral, W.: Optimal expansions of discrete-time Volterra models using Laguerre functions. Automatica 40, 815–822 (2004)

    Article  MathSciNet  Google Scholar 

  4. Ljung, L.: System Identification: Theory for the User. Prentice Hall Information and System Sciences Series, Prentice Hall PTR (1999)

    Google Scholar 

  5. Pillonetto, G., De Nicolao, G.: A new kernel-based approach for linear system identification. Automatica 46(1), 81–93 (2010)

    Article  MathSciNet  Google Scholar 

  6. Pillonetto, G., Dinuzzo, F., Chen, T., De Nicolao, G., Ljung, L.: Kernel methods in system identification, machine learning and function estimation: a survey. Automatica 50(3), 657–682 (2014)

    Article  MathSciNet  Google Scholar 

  7. Pintelon, R., Schoukens, J.: System Identification: A Frequency Domain Approach. Wiley, New York (2012)

    Book  Google Scholar 

  8. Rugh, W.J.: Nonlinear System Theory: The Volterra-Wiener Approach. Johns Hopkins University Press, Baltimore (1980)

    MATH  Google Scholar 

  9. Schetzen, M.: The Volterra and Wiener Theories of Nonlinear Systems. Wiley, New York (1980)

    MATH  Google Scholar 

  10. Stoddard, J.G., Welsh, J.S.: Volterra kernel identification using regularized orthonormal basis functions (2018). https://arxiv.org/abs/1804.07429

  11. Stoddard, J.G., Welsh, J.S., Hjalmarsson, H.: EM-based hyperparameter optimization for regularized Volterra kernel estimation. IEEE Control Syst. Lett. 1(2), 388–393 (2017)

    Article  Google Scholar 

  12. Wahlberg, B.: System identification using Laguerre models. IEEE Trans. Autom. Control AC–36(5), 551–562 (1991)

    Article  MathSciNet  Google Scholar 

  13. Wellstead, P.E.: Introduction to Physical System Modelling. Academic Press, London (1979)

    Google Scholar 

  14. Wigren, T., Schoukens, M.: Coupled electric drives data set and reference models. Technical report, Department of Information Technology, Uppsala University (2017). http://www.it.uu.se/research/publications/reports/2017-024/2017-024-nc.pdf

  15. Wu, C.F.J.: On the convergence properties of the EM algorithm. Ann. Stat. 11(1), 95–103 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy G. Stoddard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stoddard, J.G., Welsh, J.S. (2018). Data-Driven Modeling of a Coupled Electric Drives System Using Regularized Basis Function Volterra Kernels. In: Chen, Z., Mendes, A., Yan, Y., Chen, S. (eds) Intelligent Robotics and Applications. ICIRA 2018. Lecture Notes in Computer Science(), vol 10984. Springer, Cham. https://doi.org/10.1007/978-3-319-97586-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97586-3_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97585-6

  • Online ISBN: 978-3-319-97586-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics