Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dirichlet Densifiers: Beyond Constraining the Spectral Gap

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2018)

Abstract

In this paper, we derive a new bound for commute times estimation. This bound does not rely on the spectral gap but on graph densification (or graph rewiring). Firstly, we motivate the bound by showing that implicitly constraining the spectral gap through graph densification cannot fully explain some estimations in real datasets. Then, we set our working hypothesis: if densification can deal with a small/moderate degradation of the spectral gap, this is due to the fact that inter-cluster commute distances are considerably shrunk. This suggests a more detailed bound which explicitly accounts for the shrinking effect of densification. Finally, we formally develop this bound, thus uncovering the deep implications of graph densification in commute times estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://yann.lecun.com/exdb/mnist/.

  2. 2.

    http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.

  3. 3.

    http://www.multimedia-computing.de/flickrlogos/.

  4. 4.

    http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.

  5. 5.

    Conversely, if this is not the case, we are forced to fuse more nodes, thus reducing the number of slices from S to, say, \(S'\) with more edges each. This leads to contracting the bound for \(R^{H}(s,t)\) even more.

References

  1. Alamgir, M., von Luxburg, U.: Phase transition in the family of p-resistances. In: 25th Annual Conference on Neural Information Processing Systems. Advances in Neural Information Processing Systems. Proceedings of a Meeting Held at Granada, Spain, 12–14 December 2011, vol. 24, pp. 379–387 (2011)

    Google Scholar 

  2. Aroraa, S., Kargerb, D., Karpinskic, M.: Polynomial time approximation schemes for dense instances of NP-hard problems. J. Comput. Syst. Sci. 58(1), 193–210 (1999)

    Article  MathSciNet  Google Scholar 

  3. Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks, vol. 22, 1st edn. Mathematical Association of America, Washington, D.C. (1984)

    MATH  Google Scholar 

  4. Escolano, F., Curado, M., Hancock, E.R.: Commute times in dense graphs. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 241–251. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49055-7_22

    Chapter  Google Scholar 

  5. Escolano, F., Curado, M., Lozano, M.A., Hancook, E.R.: Dirichlet graph densifiers. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 185–195. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49055-7_17

    Chapter  Google Scholar 

  6. Hardt, M., Srivastava, N., Tulsiani, M.: Graph densification. In: Innovations in Theoretical Computer Science, Cambridge, MA, USA, 8–10 January 2012, pp. 380–392 (2012)

    Google Scholar 

  7. Lovász, L.: Random walks on graphs: a survey. In: Miklós, D., Sós, V.T., Szőnyi, T. (eds.) Combinatorics, Paul Erdős is Eighty, vol. 2, pp. 353–398. János Bolyai Mathematical Society, Budapest (1996)

    Google Scholar 

  8. von Luxburg, U., Radl, A., Hein, M.: Hitting and commute times in large random neighborhood graphs. J. Mach. Learn. Res. 15(1), 1751–1798 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Qiu, H., Hancock, E.R.: Clustering and embedding using commute times. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1873–1890 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

M. Curado, F. Escolano and M.A. Lozano are funded by the project TIN2015-69077-P of the Spanish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Curado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Curado, M., Escolano, F., Lozano, M.A., Hancock, E.R. (2018). Dirichlet Densifiers: Beyond Constraining the Spectral Gap. In: Bai, X., Hancock, E., Ho, T., Wilson, R., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2018. Lecture Notes in Computer Science(), vol 11004. Springer, Cham. https://doi.org/10.1007/978-3-319-97785-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97785-0_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97784-3

  • Online ISBN: 978-3-319-97785-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics