Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Plantar Pressure Data Based Gait Recognition by Using Long Short-Term Memory Network

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10996))

Included in the following conference series:

Abstract

As a kind of continuous time series, plantar pressure data contains rich contact of time information which has not been fully utilized in existing gait recognition methods. In this paper, we proposed a new gait recognition method based on plantar pressure data with a Long Short-Term Memory (LSTM) network. By normalization and dimensionality reduction, the raw pressure data was converted to feature tensor. Then we feed the LSTM network with the feature tensors and implement classification recognition. We collected data from 93 subjects of different age groups, and each subjects was collected 10 sets of pressure data. The experiment results turn out that our LSTM network can get high classification accuracy and performs better than CNN model and many traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben, X., Meng, W., Yan, R., Wang, K.: An improved biometrics technique based on metric learning approach. Neurocomputing 97, 44–51 (2012)

    Article  Google Scholar 

  2. Ben, X., Zhang, P., Meng, W., Yan, R., Yang, M., Liu, W., Zhang, H.: On the distance metric learning between cross-domain gaits. Neurocomputing 208, 153–164 (2016)

    Article  Google Scholar 

  3. Pujol, E., Müller, B., Coll, R., et al.: Gait pattern recognition by foot pressure measurement in patients with intra-articular calcaneus fractures. In: World Congress of the International Society of Physical and Rehabilitation Medicine (2009)

    Google Scholar 

  4. Feng, Y., Li, Y., Luo, J.: Learning effective gait features using LSTM. In: 23rd International Conference on Pattern Recognition, ICPR 2016, Cancún, Mexico, 4–8 December 2016, pp. 325–330 (2016)

    Google Scholar 

  5. Xia, R., Ma, Z., Yao, Z., Sun, Y.: Gait recognition based on spatio-temporal HOG feature of plantar pressure distribution. J.PR & AI. 26(6), 529–536 (2013)

    Google Scholar 

  6. Pataky, T.C., Mu, T., Bosch, K., Rosenbaum, D., Goulermas, J.Y.: Gait recognition: highly unique dynamic plantar pressure patterns among 104 individuals. J. R. Soc. Interface 9, 790–800 (2012)

    Article  Google Scholar 

  7. Li, Y., et al.: A convolutional neural network for gait recognition based on plantar pressure images. In: Zhou, J., et al. (eds.) CCBR 2017. LNCS, vol. 10568, pp. 466–473. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69923-3_50

    Chapter  Google Scholar 

  8. Greff, K., Srivastava, R., Koutník, J., et al.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2016)

    Article  MathSciNet  Google Scholar 

  9. Liao, R., Cao, C., Garcia, E.B., Yu, S., Huang, Y.: Pose-based temporal-spatial network (PTSN) for gait recognition with carrying and clothing variations. In: Zhou, J., et al. (eds.) CCBR 2017. LNCS, vol. 10568, pp. 474–483. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69923-3_51

    Chapter  Google Scholar 

  10. Xie, C., Li, C., Zhang, B., Chen, C.: Memory attention networks for skeleton-based action recognition. IJCAI (2018). arXiv: 1804.08254

    Google Scholar 

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  12. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)

    Google Scholar 

  13. Zhang, K., Huang, Y., Du, Y., et al.: Facial expression recognition based on deep evolutional spatial-temporal networks. IEEE Trans. Image Process. 26, 4193–4203 (2017)

    Article  MathSciNet  Google Scholar 

  14. Liu, Y.-H., Liu, X., Fan, W., Zhong, B., Du, J.-X.: Efficient audio-visual speaker recognition via deep heterogeneous feature fusion. In: Zhou, J., et al. (eds.) CCBR 2017. LNCS, vol. 10568, pp. 575–583. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69923-3_62

    Chapter  Google Scholar 

  15. Xia, Y., Ma, Z., Yao, Z., Sun, Y.: Gait recognition based on spatio-temporal HOG of plantar pressure distribution. Pattern Recognit. Artif. Intell. 26, 529–536 (2013)

    Google Scholar 

  16. Huang, H., Qiu, J., Liu, T., et al.: Similarity of center of pressure progression during walking and jogging of anterior cruciate ligament deficient patients. Plos One 12(1) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqing He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., He, Y., Zhang, X., Zhao, Q. (2018). Plantar Pressure Data Based Gait Recognition by Using Long Short-Term Memory Network. In: Zhou, J., et al. Biometric Recognition. CCBR 2018. Lecture Notes in Computer Science(), vol 10996. Springer, Cham. https://doi.org/10.1007/978-3-319-97909-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97909-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97908-3

  • Online ISBN: 978-3-319-97909-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics