Abstract
Although face detection has taken a big step forward with the development of anchor based face detector, the issue of effective detection of faces with different scales still remains. To solve this problem, we present an one-stage face detector, named Single Shot Attention-Based Face Detector (AFD), which enables accurate detection of multi-scale faces with high efficiency, especially for small faces. Specifically, AFD consists of two inter-connected modules, namely attention proposal module (APM) and face detection module (FDM). The former aims to generate the attention region and coarsely refine the anchors. The latter takes the output from APM as input and further improve the detection results. We obtain state-of-the-art results on common face detection benchmarks, i.e. FDDB and WIDER FACE, and can run at 20 FPS on a Nvidia Titan X (Pascal) for VGA-resolution images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Luan, T., Yin, X., Liu, X.: Disentangled representation learning GAN for pose-invariant face recognition. In: CVPR (2017)
Masi, I., Chang, F.J., Choi, J., Harel, S., Kim, J., Kim, K.G.: Learning pose-aware models for pose-invariant face recognition in the wild. In: PAMI (2018)
Xing, J., Niu, Z., Huang, J., Hu, W., Xi, Z., Yan, S.: Towards robust and accurate multi-view and partially-occluded face alignment. In: PAMI (2018)
Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S.Z.: Face alignment across large poses: a 3D solution. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2016)
Viola, P., Jones, M.J.: Robust real-time face detection. IJCV 57, 137–154 (2004)
Lecun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: The Handbook of Brain Theory and Neural Networks (1995)
Li, H., Lin, Z., Shen, X., Brandt, J., Hua, G.: A convolutional neural network cascade for face detection. In: CVPR (2015)
Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. Sig. Process. Lett. 23, 1499–1503 (2016)
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., Li, S.Z.: S\(^3\)FD: single shot scale-invariant face detector. In: ICCV (2017)
Huang, J., Guadarrama, S., Murphy, K., Rathod, V., Sun, C., Zhu, M., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: CVPR (2017)
Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. In: CVPR (2018)
Jain, V., Learned-Miller, E.: FDDB: a benchmark for face detection in unconstrained settings. UMass Amherst Technical report (2010)
Yang, S., Luo, P., Loy, C.C., Tang, X.: Wider face: a face detection benchmark. In: CVPR (2016)
Huang, C., Ai, H., Li, Y., Lao, S.: High-performance rotation invariant multiview face detection. In: PAMI (2007)
Li, S.Z., Zhu, L., Zhang, Z.Q., Blake, A., Zhang, H.J., Shum, H.: Statistical learning of multi-view face detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 67–81. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47979-1_5
Felzenszwalb, P., Mcallester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: CVPR (2008)
Yan, J., Zhang, X., Lei, Z., Li, S.Z.: Face detection by structural models. Image Vis. Comput. 32, 790–799 (2014)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. NIPS (2015)
Jiang, H., Learned-Miller, E.: Face detection with the faster R-CNN. In: Automatic Face and Gesture Recognition (2017)
Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)
Wang, J., Yuan, Y., Yu, G.: Face attention network: an effective face detector for the occluded faces. arXiv: 1711.07246 (2017)
Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: ACMMM (2014)
Acknowledgments
This work was supported by the Chinese National Natural Science Foundation Projects #61473291, #61572536, #61572501, #61573356, the National Key Research and Development Plan (Grant No. 2016YFC0801002), and AuthenMetric R&D Funds.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhuang, C., Zhang, S., Zhu, X., Lei, Z., Li, S.Z. (2018). Single Shot Attention-Based Face Detector. In: Zhou, J., et al. Biometric Recognition. CCBR 2018. Lecture Notes in Computer Science(), vol 10996. Springer, Cham. https://doi.org/10.1007/978-3-319-97909-0_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-97909-0_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97908-3
Online ISBN: 978-3-319-97909-0
eBook Packages: Computer ScienceComputer Science (R0)