Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Homophily Independent Cascade Diffusion Model Based on Textual Information

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11055))

Included in the following conference series:

  • 1332 Accesses

Abstract

In this research, we proposed homophily independent cascade model based on textual information, namely Textual-Homo-IC. This model based on standard independent cascade model; however, we exploited the aspect of infected probability estimation relied on homophily. Particularly, homophily is measured based on textual content by utilizing topic modeling. The process of propagation takes place on agent’s network where each agent represents a node. In addition to expressing the Textual-Homo-IC model on the static network, we also revealed it on dynamic agent’s network where there is not only transformation of the structure but also the node’s properties during the spreading process. We conducted experiments on two collected data sets from NIPS and a social network platform-Twitter and have attained satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://pypi.python.org/pypi/gensim.

References

  1. Aiello, L.M., Barrat, A., Schifanella, R., Cattuto, C., Markines, B., Menczer, F.: Friendship prediction and homophily in social media. TWEB 6(2), 91–93 (2012)

    Article  Google Scholar 

  2. Bui, Q.V., Sayadi, K., Amor, S.B., Bui, M.: Combining Latent Dirichlet Allocation and K-means for documents clustering: effect of probabilistic based distance measures. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS (LNAI), vol. 10191, pp. 248–257. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54472-4_24

    Chapter  Google Scholar 

  3. Buntine, W.: Estimating likelihoods for topic models. In: Zhou, Z.-H., Washio, T. (eds.) ACML 2009. LNCS (LNAI), vol. 5828, pp. 51–64. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05224-8_6

    Chapter  Google Scholar 

  4. Cardoso, F.M., Meloni, S., Santanchè, A., Moreno, Y.: Topical homophily in online social systems. CoRR abs/1707.06525 (2017)

    Google Scholar 

  5. Gayraud, N.T., Pitoura, E., Tsaparas, P.: Diffusion maximization in evolving social networks. In: Proceedings of the 2015 ACM on Conference on Online Social Networks, USA, pp. 125–135 (2015)

    Google Scholar 

  6. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark. Lett. 12(3), 211–223 (2001)

    Article  Google Scholar 

  7. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)

    Article  Google Scholar 

  8. Hoffman, M.D., Blei, D.M., Wang, C., Paisley, J.W.: Stochastic Variational Inference. CoRR abs/1206.7051 (2012)

    Google Scholar 

  9. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, USA, pp. 137–146 (2003)

    Google Scholar 

  10. Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005). https://doi.org/10.1007/11523468_91

    Chapter  Google Scholar 

  11. Kimura, M., Saito, K.: Tractable models for information diffusion in social networks. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 259–271. Springer, Heidelberg (2006). https://doi.org/10.1007/11871637_27

    Chapter  Google Scholar 

  12. Laniado, D., Volkovich, Y., Kappler, K., Kaltenbrunner, A.: Gender homophily in online dyadic and triadic relationships. EPJ Data Sci. 5(1), 19 (2016)

    Article  Google Scholar 

  13. Lazarsfeld, P.F., Merton, R.K.: Friendship as a social process: a substantive and methodological analysis. Freedom Control Mod. Soc. 18(1), 18–66 (1954)

    Google Scholar 

  14. Blei, D.M., Ng, A.Y., Jordan, M.: Latent Dirichlet Allocation. J. Mach. Learn. Res. 3, 601–608 (2001)

    MATH  Google Scholar 

  15. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001)

    Article  Google Scholar 

  16. Niazi, M., Hussain, A.: Agent-based computing from multi-agent systems to agent-based models: a visual survey. Scientometrics 89(2), 479 (2011)

    Article  Google Scholar 

  17. Rosen-Zvi, M., Griffiths, T.L., Steyvers, M., Smyth, P.: The author-topic model for authors and documents. In: UAI 2004, Proceedings of the 20th Conference in Uncertainty in Artificial Intelligence, Canada, pp. 487–494 (2004)

    Google Scholar 

  18. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 24(5), 513–523 (1988)

    Article  Google Scholar 

  19. Zhuang, H., Sun, Y., Tang, J., Zhang, J., Sun, X.: Influence maximization in dynamic social networks. In: 2013 IEEE 13th International Conference on Data Mining, pp. 1313–1318, December 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thi Kim Thoa Ho or Quang Vu Bui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ho, T.K.T., Bui, Q.V., Bui, M. (2018). Homophily Independent Cascade Diffusion Model Based on Textual Information. In: Nguyen, N., Pimenidis, E., Khan, Z., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2018. Lecture Notes in Computer Science(), vol 11055. Springer, Cham. https://doi.org/10.1007/978-3-319-98443-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98443-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98442-1

  • Online ISBN: 978-3-319-98443-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics