Abstract
The author in collaboration with Calude, Jain, Li and Stephan provided an algorithm that solves the parity games problem in quasi-polynomial time. In terms of running time, this is currently the most efficient algorithm that solves the parity games problem. The goal of this lecture is to give a brief background to the problem and present the algorithm in a somewhat informal way with a bit more emphasis on ideas rather than formal details.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Björklund, H., Sandberg, S., Vorobyov, S.: Memoryless determinacy of parity and mean payoff games: a simple proof. Theor. Comput. Sci. 310(1–3), 365–378 (2004)
Bodlaender, H.L., Dinneen, M.J., Khoussainov, B.: On game-theoretic models of networks. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 550–561. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45678-3_47
Bodlaender, H.L., Dinneen, M.J., Khoussainov, B.: Relaxed update and partition network games. Fundamenta Informaticae 49(4), 301–312 (2002)
Bernet, J., Janin, D., Walukiewich, I.: Permissive strategies from parity games to safety games. ITA 36(3), 261–275 (2002)
Bradfield, J., Walukiewicz, I.: The mu-calculus and model checking. Handbook of Model Checking, pp. 871–919. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_26
Richard Büchi, J.: On a decision method in the restricted second order arithmetic. In: Proceedings of the International Congress on Logic, Methodology and Philosophy of Science, pp. 1–11. Stanford University Press (1960)
Richard Büchi, J.: Decision methods in the theory of ordinals. Bull. Am. Math. Soc. 71, 767–770 (1965)
Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games in quasipolynomial time. Proc. STOC 2017, 252–263 (2017)
Di Stasio, A., Murano, A., Perelli, G., Vardi, M.Y.: Solving parity games using an automata-based algorithm. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 64–76. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40946-7_6
Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity Theory. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4471-5559-1
Friedmann, O.: An exponential lower bound for the parity game strategy improvement algorithm as we know it. In: Logic in Computer Science, LICS vol. 2009, pp. 145–156 (2009)
Emerson, E.A., Jutla, C.S.: Tree automata, \(\mu \)-calculus and determinacy. In: Annals of IEEE Symposium on Foundations of Computer Science, pp. 368–377 (1991)
Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model checking for the \(\mu \)-calculus and its fragments. Theor. Comput. Sci. 258(1–2), 491–522 (2001)
Gandhi, A., Khoussainov, B., Liu, J.: Efficient algorithms for games played on trees with back-edges. Fundamenta Informaticae 111(4), 391–412 (2011)
Gurevich, Y., Harrington, L.: Trees, automata and games. In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC 1982, 5–7 May 1982, San Francisco, California, USA, pp. 60–65 (1982)
Ishihara, H., Khoussainov, B.: Complexity of some infinite games played on finite graphs. In: Goos, G., Hartmanis, J., van Leeuwen, J., Kučera, L. (eds.) WG 2002. LNCS, vol. 2573, pp. 270–281. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36379-3_24
Jurdzinski, M.: Deciding the winner in parity games is in UP \(\cap \) co -UP. Inf. Process. Lett. 68(3), 119–124 (1998)
Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46541-3_24
Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. SIAM J. Comput. 38(4), 1519–1532 (2008)
Kozen, D.: Results on the propositional \(\mu \)-calculus. Theor. Comput. Sci. 27(3), 333–354 (1983)
Kupferman, O., Vardi, M.Y.: Weal alternating automata and tree automata emtiness. In: STOC, pp. 224–233 (1998)
Martin, D.A.: Borel determinacy. Ann. Math. Second Ser. 102(2), 363–371 (1975)
McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic 65(2), 149–184 (1993)
Obdrzalek, J.: Algorithmic analysis of parity games. Ph.D. thesis, University of Edinburgh (2006)
Petersson, V., Vorobyov, S.G.: A randomized subexponential algorithm for parity games. Nordic J. Comput. 8, 324–345 (2001)
Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Am. Math. Soc. 141, 1–35 (1969)
Schewe, S.: Solving parity games in big steps. J. Comput. Syst. Sci. 84, 243–262 (2017)
Stirling, C.: Bisimulation, modal logic and model checking games. Logic J. IGPL 7(1), 103–124 (1999)
Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59042-0_57
Wilkie, T.: Alternating tree automata, parity games and modal \(\mu \)-calculus. Bull. Belg. Math. Soc. 8(2), 359–391 (2001)
Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theor. Comput. Sci. 200, 135–183 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Khoussainov, B. (2018). A Brief Excursion to Parity Games. In: Hoshi, M., Seki, S. (eds) Developments in Language Theory. DLT 2018. Lecture Notes in Computer Science(), vol 11088. Springer, Cham. https://doi.org/10.1007/978-3-319-98654-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-98654-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98653-1
Online ISBN: 978-3-319-98654-8
eBook Packages: Computer ScienceComputer Science (R0)