Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

ScaleSCAN: Scalable Density-Based Graph Clustering

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11029))

Included in the following conference series:

Abstract

How can we efficiently find clusters (a.k.a. communities) included in a graph with millions or even billions of edges? Density-based graph clustering SCAN is one of the fundamental graph clustering algorithms that can find densely connected nodes as clusters. Although SCAN is used in many applications due to its effectiveness, it is computationally expensive to apply SCAN to large-scale graphs since SCAN needs to compute all nodes and edges. In this paper, we propose a novel density-based graph clustering algorithm named ScaleSCAN for tackling this problem on a multicore CPU. Towards the problem, ScaleSCAN integrates efficient node pruning methods and parallel computation schemes on the multicore CPU for avoiding the exhaustive nodes and edges computations. As a result, ScaleSCAN detects exactly same clusters as those of SCAN with much shorter computation time. Extensive experiments on both real-world and synthetic graphs demonstrate that the performance superiority of ScaleSCAN over the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We opened our source codes of ScaleSCAN on our website.

References

  1. Arai, J., Shiokawa, H., Yamamuro, T., Onizuka, M., Iwamura, S.: Rabbit order: just-in-time parallel reordering for fast graph analysis. In: Proceedings of the 2016 IEEE International Parallel and Distributed Processing Symposium, pp. 22–31 (2016)

    Google Scholar 

  2. Boldi, P., Vigna, S.: The webgraph framework I: compression techniques. In: Proceedings of the 13th International Conference on World Wide Web, pp. 595–601 (2004)

    Google Scholar 

  3. Chang, L., Li, W., Qin, L., Zhang, W., Yang, S.: pSCAN: fast and exact structural graph clustering. IEEE Trans. Knowl. Data Eng. 29(2), 387–401 (2017)

    Article  Google Scholar 

  4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  5. Ding, Y., et al.: atBioNet–an integrated network analysis tool for genomics and biomarker discovery. BMC Genom. 13(1), 1–12 (2012)

    Article  Google Scholar 

  6. Fortunato, S., Lancichinetti, A.: Community detection algorithms: a comparative analysis. In: Proceedings of the 4th International ICST Conference on Performance Evaluation Methodologies and Tools, pp. 27:1–27:2 (2009)

    Google Scholar 

  7. Fujiwara, Y., Nakatsuji, M., Shiokawa, H., Ida, Y., Toyoda, M.: Adaptive message update for fast affinity propagation. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 309–318 (2015)

    Google Scholar 

  8. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1), 124–149 (1991)

    Article  Google Scholar 

  9. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network Dataset Collection, June 2014. http://snap.stanford.edu/data

  10. Mai, S.T., Dieu, M.S., Assent, I., Jacobsen, J., Kristensen, J., Birk, M.: Scalable and interactive graph clustering algorithm on multicore CPUs. In: Proceedings of the 33rd IEEE International Conference on Data Engineering, pp. 349–360 (2017)

    Google Scholar 

  11. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)

    Book  Google Scholar 

  12. Naik, A., Maeda, H., Kanojia, V., Fujita, S.: Scalable Twitter user clustering approach boosted by personalized PageRank. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS, vol. 10234, pp. 472–485. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57454-7_37

    Chapter  Google Scholar 

  13. Sato, T., Shiokawa, H., Yamaguchi, Y., Kitagawa, H.: FORank: fast ObjectRank for large heterogeneous graphs. In: Companion Proceedings of the the Web Conference, pp. 103–104 (2018)

    Google Scholar 

  14. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  15. Shiokawa, H., Fujiwara, Y., Onizuka, M.: Fast algorithm for modularity-based graph clustering. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence, pp. 1170–1176 (2013)

    Google Scholar 

  16. Shiokawa, H., Fujiwara, Y., Onizuka, M.: SCAN++: efficient algorithm for finding clusters, hubs and outliers on large-scale graphs. Proc. Very Large Data Bases 8(11), 1178–1189 (2015)

    Google Scholar 

  17. Solihin, Y.: Fundamentals of Parallel Multicore Architecture, 1st edn. Chapman & Hall/CRC, Boca Raton (2015)

    Google Scholar 

  18. Takahashi, T., Shiokawa, H., Kitagawa, H.: SCAN-XP: parallel structural graph clustering algorithm on Intel Xeon Phi coprocessors. In: Proceedings of the 2nd International Workshop on Network Data Analytics, pp. 6:1–6:7 (2017)

    Google Scholar 

  19. Wang, L., Xiao, Y., Shao, B., Wang, H.: How to partition a billion-node graph. In: Proceedings of the IEEE 30th International Conference on Data Engineering, pp. 568–579 (2014)

    Google Scholar 

  20. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: SCAN: a structural clustering algorithm for networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 824–833 (2007)

    Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Early-Career Scientists Grant Number JP18K18057, JST ACT-I, and Interdisciplinary Computational Science Program in CCS, University of Tsukuba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Shiokawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shiokawa, H., Takahashi, T., Kitagawa, H. (2018). ScaleSCAN: Scalable Density-Based Graph Clustering. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2018. Lecture Notes in Computer Science(), vol 11029. Springer, Cham. https://doi.org/10.1007/978-3-319-98809-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98809-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98808-5

  • Online ISBN: 978-3-319-98809-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics