Abstract
How can we efficiently find clusters (a.k.a. communities) included in a graph with millions or even billions of edges? Density-based graph clustering SCAN is one of the fundamental graph clustering algorithms that can find densely connected nodes as clusters. Although SCAN is used in many applications due to its effectiveness, it is computationally expensive to apply SCAN to large-scale graphs since SCAN needs to compute all nodes and edges. In this paper, we propose a novel density-based graph clustering algorithm named ScaleSCAN for tackling this problem on a multicore CPU. Towards the problem, ScaleSCAN integrates efficient node pruning methods and parallel computation schemes on the multicore CPU for avoiding the exhaustive nodes and edges computations. As a result, ScaleSCAN detects exactly same clusters as those of SCAN with much shorter computation time. Extensive experiments on both real-world and synthetic graphs demonstrate that the performance superiority of ScaleSCAN over the state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We opened our source codes of ScaleSCAN on our website.
References
Arai, J., Shiokawa, H., Yamamuro, T., Onizuka, M., Iwamura, S.: Rabbit order: just-in-time parallel reordering for fast graph analysis. In: Proceedings of the 2016 IEEE International Parallel and Distributed Processing Symposium, pp. 22–31 (2016)
Boldi, P., Vigna, S.: The webgraph framework I: compression techniques. In: Proceedings of the 13th International Conference on World Wide Web, pp. 595–601 (2004)
Chang, L., Li, W., Qin, L., Zhang, W., Yang, S.: pSCAN: fast and exact structural graph clustering. IEEE Trans. Knowl. Data Eng. 29(2), 387–401 (2017)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press, Cambridge (2009)
Ding, Y., et al.: atBioNet–an integrated network analysis tool for genomics and biomarker discovery. BMC Genom. 13(1), 1–12 (2012)
Fortunato, S., Lancichinetti, A.: Community detection algorithms: a comparative analysis. In: Proceedings of the 4th International ICST Conference on Performance Evaluation Methodologies and Tools, pp. 27:1–27:2 (2009)
Fujiwara, Y., Nakatsuji, M., Shiokawa, H., Ida, Y., Toyoda, M.: Adaptive message update for fast affinity propagation. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 309–318 (2015)
Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1), 124–149 (1991)
Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network Dataset Collection, June 2014. http://snap.stanford.edu/data
Mai, S.T., Dieu, M.S., Assent, I., Jacobsen, J., Kristensen, J., Birk, M.: Scalable and interactive graph clustering algorithm on multicore CPUs. In: Proceedings of the 33rd IEEE International Conference on Data Engineering, pp. 349–360 (2017)
Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)
Naik, A., Maeda, H., Kanojia, V., Fujita, S.: Scalable Twitter user clustering approach boosted by personalized PageRank. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS, vol. 10234, pp. 472–485. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57454-7_37
Sato, T., Shiokawa, H., Yamaguchi, Y., Kitagawa, H.: FORank: fast ObjectRank for large heterogeneous graphs. In: Companion Proceedings of the the Web Conference, pp. 103–104 (2018)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)
Shiokawa, H., Fujiwara, Y., Onizuka, M.: Fast algorithm for modularity-based graph clustering. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence, pp. 1170–1176 (2013)
Shiokawa, H., Fujiwara, Y., Onizuka, M.: SCAN++: efficient algorithm for finding clusters, hubs and outliers on large-scale graphs. Proc. Very Large Data Bases 8(11), 1178–1189 (2015)
Solihin, Y.: Fundamentals of Parallel Multicore Architecture, 1st edn. Chapman & Hall/CRC, Boca Raton (2015)
Takahashi, T., Shiokawa, H., Kitagawa, H.: SCAN-XP: parallel structural graph clustering algorithm on Intel Xeon Phi coprocessors. In: Proceedings of the 2nd International Workshop on Network Data Analytics, pp. 6:1–6:7 (2017)
Wang, L., Xiao, Y., Shao, B., Wang, H.: How to partition a billion-node graph. In: Proceedings of the IEEE 30th International Conference on Data Engineering, pp. 568–579 (2014)
Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: SCAN: a structural clustering algorithm for networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 824–833 (2007)
Acknowledgement
This work was supported by JSPS KAKENHI Early-Career Scientists Grant Number JP18K18057, JST ACT-I, and Interdisciplinary Computational Science Program in CCS, University of Tsukuba.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Shiokawa, H., Takahashi, T., Kitagawa, H. (2018). ScaleSCAN: Scalable Density-Based Graph Clustering. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R. (eds) Database and Expert Systems Applications. DEXA 2018. Lecture Notes in Computer Science(), vol 11029. Springer, Cham. https://doi.org/10.1007/978-3-319-98809-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-98809-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-98808-5
Online ISBN: 978-3-319-98809-2
eBook Packages: Computer ScienceComputer Science (R0)