Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Additive Capacity Problem for Quantitative Information Flow

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11024))

Included in the following conference series:

  • 773 Accesses

Abstract

Preventing information leakage is a fundamental goal in achieving confidentiality. In many practical scenarios, however, eliminating such leaks is impossible. It becomes then desirable to quantify the severity of such leaks and establish bounds on the threat they impose. Aiming at developing measures that are robust wrt a variety of operational conditions, a theory of channel capacity for the g-leakage model was developed in [1], providing solutions for several scenarios in both the multiplicative and the additive setting.

This paper continuous this line of work by providing substantial improvements over the results of [1] for additive leakage. The main idea of employing the Kantorovich distance remains, but it is now applied to quasimetrics, and in particular the novel “convex-separation” quasimetric. The benefits are threefold: first, it allows to maximize leakage over a larger class of gain functions, most notably including the one of Shannon. Second, a solution is obtained to the problem of maximizing leakage over both priors and gain functions, left open in [1]. Third, it allows to establish an additive variant of the “Miracle” theorem from [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The notation is due to the fact that distributions can be convexly combined (\({\mathbb D}\mathcal {A}\) is a vector space). \(\sum _y a_y [\delta ^y]\) is exactly the hyper assigning probability \(a_y\) to each \(\delta ^y\).

  2. 2.

    Which is why we generally refer to the maximization of leakage as “capacity”.

  3. 3.

    The same phenomenon happens for multiplicative leakage, this time demonstrated by shifting. To keep \(\mathcal {ML}^{\times }_{\mathcal {G}}(\pi ,C)\) bounded we can restrict to the class \({\mathbb G}^{+}{\mathcal{X}}\) of non-negative gain functions.

  4. 4.

    The choice \(\mathcal{W}= \mathcal{X}\mathbin {\rightarrow }\{-1,1\}\), \(g(w,x) = \frac{1}{2}\big ( w(x) - \mathcal{E}_{\pi }{w} \big )\) is also capacity-realizing [1].

References

  1. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith, G.: Additive and multiplicative notions of leakage, and their capacities. In: Proceedings of CSF, pp. 308–322. IEEE (2014)

    Google Scholar 

  2. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith, G.: Axioms for information leakage. In: Proceedings of CSF, pp. 77–92 (2016)

    Google Scholar 

  3. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring information leakage using generalized gain functions. In: Proceedings of CSF, pp. 265–279 (2012)

    Google Scholar 

  4. Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.: Decomposition instead of self-composition for proving the absence of timing channels. In: PLDI, pp. 362–375. ACM (2017)

    Google Scholar 

  5. Backes, M., Köpf, B., Rybalchenko, A.: Automatic discovery and quantification of information leaks. In: Proceedings of S&P, pp. 141–153 (2009)

    Google Scholar 

  6. Barthe, G., Köpf, B.: Information-theoretic bounds for differentially private mechanisms. In: Proceedings of CSF, pp. 191–204 (2011)

    Google Scholar 

  7. Biondi, F., Kawamoto, Y., Legay, A., Traonouez, L.-M.: HyLeak: hybrid analysis tool for information leakage. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 156–163. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_11

    Chapter  Google Scholar 

  8. Biondi, F., Legay, A., Traonouez, L.-M., Wąsowski, A.: QUAIL: a quantitative security analyzer for imperative code. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 702–707. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_49

    Chapter  Google Scholar 

  9. Braun, C., Chatzikokolakis, K., Palamidessi, C.: Quantitative notions of leakage for one-try attacks. In: Proceedings of MFPS, ENTCS, vol. 249, pp. 75–91. Elsevier (2009)

    Google Scholar 

  10. Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical measurement of information leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 390–404. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2_33

    Chapter  MATH  Google Scholar 

  11. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: On the Bayes risk in information-hiding protocols. J. Comp. Secur. 16(5), 531–571 (2008)

    Article  Google Scholar 

  12. Clarkson, M.R., Schneider, F.B.: Quantification of integrity. In: Proceedings of CSF, pp. 28–43 (2010)

    Google Scholar 

  13. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  14. Doychev, G., Köpf, B.: Rigorous analysis of software countermeasures against cache attacks. In: PLDI, pp. 406–421. ACM (2017)

    Google Scholar 

  15. Heusser, J., Malacaria, P.: Quantifying information leaks in software. In: Proceedings ACSAC 2010, pp. 261–269 (2010)

    Google Scholar 

  16. Khouzani, M.H.R., Malacaria, P.: Relative perfect secrecy: universally optimal strategies and channel design. In: Proceedings of CSF, pp. 61–76 (2016)

    Google Scholar 

  17. Köpf, B., Basin, D.: An information-theoretic model for adaptive side-channel attacks. In: Proceedings of CCS, pp. 286–296 (2007)

    Google Scholar 

  18. Köpf, B., Mauborgne, L., Ochoa, M.: Automatic quantification of cache side-channels. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 564–580. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_40

    Chapter  Google Scholar 

  19. Köpf, B., Rybalchenko, A.: Approximation and randomization for quantitative information-flow analysis. In: Proceedings of CSF, pp. 3–14 (2010)

    Google Scholar 

  20. Köpf, B., Smith, G.: Vulnerability bounds and leakage resilience of blinded cryptography under timing attacks. In: Proceedings of CSF, pp. 44–56 (2010)

    Google Scholar 

  21. Malacaria, P.: Assessing security threats of looping constructs. In: Proceedings of POPL, pp. 225–235 (2007)

    Google Scholar 

  22. McIver, A., Meinicke, L., Morgan, C.: Compositional closure for bayes risk in probabilistic noninterference. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 223–235. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1_19

    Chapter  Google Scholar 

  23. Meng, Z., Smith, G.: Calculating bounds on information leakage using two-bit patterns. In: Proceedings of PLAS, pp. 1:1–1:12 (2011)

    Google Scholar 

  24. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00596-1_21

    Chapter  Google Scholar 

  25. Sweet, I., Trilla, J.M.C., Scherrer, C., Hicks, M., Magill, S.: What’s the over/under? Probabilistic bounds on information leakage. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS, vol. 10804, pp. 3–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89722-6_1

    Chapter  Google Scholar 

  26. Villani, C.: Topics in Optimal Transportation. No. 58, American Mathematical Society (2003)

    Google Scholar 

  27. Yasuoka, H., Terauchi, T.: Quantitative information flow – verification hardness and possibilities. In: Proceedings of CSF, pp. 15–27 (2010)

    Google Scholar 

Download references

Acknowledgements

All results were obtained in the process of preparing a manuscript on Quantitative Information Flow with my long-term collaborators M. Alvim, C. Morgan, A. McIver, C. Palamidessi and G. Smith, and were heavily influenced by their feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Chatzikokolakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chatzikokolakis, K. (2018). On the Additive Capacity Problem for Quantitative Information Flow. In: McIver, A., Horvath, A. (eds) Quantitative Evaluation of Systems. QEST 2018. Lecture Notes in Computer Science(), vol 11024. Springer, Cham. https://doi.org/10.1007/978-3-319-99154-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99154-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99153-5

  • Online ISBN: 978-3-319-99154-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics