Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Extract Knowledge from Web Pages in a Specific Domain

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11061))

  • 1737 Accesses

Abstract

Most NLP tasks are based on large, well-organized corpus in general domain, while limited work has been done in specific domain due to the lack of qualified corpus and evaluation dataset. However domain-specific applications are widely needed nowadays. In this paper, we propose a fast and inexpensive, model-assisted method to train a high-quality distributional model from scattered, unconstructed web pages, which can capture knowledge from a specific domain. This approach does not require pre-organized corpus and much human help, and hence works on the specific domain which can’t afford the cost of artificially constructed corpus and complex training. We use Word2vec to assist in creating term set and evaluation dataset of embroidery domain. Next, we train a distributional model on filtered search results of term set, and conduct a task-specific tuning via two simple but practical evaluation metrics, word pairs similarity and in-domain terms’ coverage. Furthermore, our much-smaller models outperform the word embedding model trained on a large, general corpus in our task. In this work, we demonstrate the effectiveness of our method and hope it can serve as a reference for researchers who extract high-quality knowledge in specific domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altszyler, E., Ribeiro, S., Sigman, M., Slezak, D.F.: The interpretation of dream meaning: resolving ambiguity using latent semantic analysis in a small corpus of text. Conscious. Cogn. 56, 178–187 (2017). https://doi.org/10.1016/j.concog.2017.09.004

    Article  Google Scholar 

  2. Altszyler, E., Sigman, M., Slezak, D.F.: Comparative study of LSA vs Word2Vec embeddings in small corpora: a case study in dreams database. Science 8, 9

    Google Scholar 

  3. Altszyler, E., Sigman, M., Slezak, D.F.: Corpus specificity in LSA and Word2Vec: the role of out-of-domain documents. arXiv preprint arXiv:1712.10054 (2017)

  4. Baroni, M., Dinu, G., Kruszewski, G.: Don’t count, predict! a systematic comparison of context-counting vs. context-predicting semantic vectors. In: Proceedings of the 52nd Annual Meeting of the ACL, vol. 1: Long Papers, pp. 238–247 (2014)

    Google Scholar 

  5. Cardellino, C., Alonso i Alemany, L.: Disjoint semi-supervised Spanish verb sense disambiguation using word embeddings. In: XVIII Simposio Argentino de Inteligencia Artificial (ASAI)-JAIIO 46 (Córdoba, 2017) (2017)

    Google Scholar 

  6. Chiu, B., Crichton, G., Korhonen, A., Pyysalo, S.: How to train good word embeddings for biomedical NLP. In: Proceedings of the 15th Workshop on BioNLP. ACL (2016)

    Google Scholar 

  7. Diaz, F., Mitra, B., Craswell, N.: Query expansion with locally-trained word embeddings. In: Proceedings of the 54th Annual Meeting of the ACL, vol. 1: Long Papers. ACL (2016)

    Google Scholar 

  8. Dusserre, E., Padró, M.: Bigger does not mean better! we prefer specificity. In: IWCS 2017–12th International Conference on Computational Semantics–Short Papers (2017)

    Google Scholar 

  9. Finkelstein, L., et al.: Placing search in context: the concept revisited. ACM Trans. Inf. Syst. 20(1), 116–131 (2002). https://doi.org/10.1145/503104.503110

    Article  Google Scholar 

  10. Hill, F., Reichart, R., Korhonen, A.: SimLex-999: evaluating semantic models with (genuine) similarity estimation. Comput. Linguist. 41(4), 665–695 (2015). https://doi.org/10.1162/coli_a_00237

    Article  MathSciNet  Google Scholar 

  11. Jin, P., Wu, Y.: SemEval-2012 task 4: evaluating Chinese word similarity. In: Proceedings of the First Joint Conference on Lexical and Computational Semantics-Volume 1: Proceedings of the Main Conference and the Shared Task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation, pp. 374–377. ACL (2012)

    Google Scholar 

  12. Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: International Conference on Machine Learning, pp. 957–966 (2015)

    Google Scholar 

  13. Kutuzov, A., Kunilovskaya, M.: Size vs. structure in training corpora for word embedding models: araneum russicum maximum and russian national corpus. In: van der Aalst, W., et al. (eds.) AIST 2017. LNCS, vol. 10716, pp. 47–58. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73013-4_5

    Chapter  Google Scholar 

  14. Lai, S., Liu, K., He, S., Zhao, J.: How to generate a good word embedding? IEEE Intell. Syst. 1 (2017)

    Google Scholar 

  15. Levy, O., Goldberg, Y., Dagan, I.: Improving distributional similarity with lessons learned from word embeddings. TACL 3, 211–225 (2015)

    Google Scholar 

  16. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 142–150. ACL (2011)

    Google Scholar 

  17. Major, V., Surkis, A., Aphinyanaphongs, Y.: Utility of general and specific word embeddings for classifying translational stages of research. arXiv preprint arXiv:1705.06262 (2017)

  18. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  19. Mikolov, T., Le, Q.V., Sutskever, I.: Exploiting similarities among languages for machine translation. arXiv preprint arXiv:1309.4168 (2013)

  20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  21. Pakhomov, S.V., Finley, G., McEwan, R., Wang, Y., Melton, G.B.: Corpus domain effects on distributional semantic modeling of medical terms. Bioinformatics 32, 3635–3644 (2016). https://doi.org/10.1093/bioinformatics/btw529

    Article  Google Scholar 

  22. Qu, L., Ferraro, G., Zhou, L., Hou, W., Schneider, N., Baldwin, T.: Big data small data, in domain out-of domain, known word unknown word: the impact of word representations on sequence labelling tasks. In: Proceedings of the Nineteenth Conference on CoNLL. ACL (2015). https://doi.org/10.18653/v1/k15-1009

  23. Rekabsaz, N., Mitra, B., Lupu, M., Hanbury, A.: Toward incorporation of relevant documents in Word2Vec. arXiv preprint arXiv:1707.06598 (2017)

  24. Spousta, M.: Web as a corpus. In: Zbornik konference WDS, vol. 6, pp. 179–184 (2006)

    Google Scholar 

  25. Sugathadasa, K., et al.: Synergistic union of Word2Vec and lexicon for domain specific semantic similarity. In: 2017 IEEE ICIIS. IEEE, December 2017. https://doi.org/10.1109/iciinfs.2017.8300343

  26. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific word embedding for twitter sentiment classification. In: Proceedings of the 52nd Annual Meeting of the ACL, vol. 1: Long Papers. ACL (2014). https://doi.org/10.3115/v1/p14-1146

  27. Muneeb, T.H., Sahu, S., Anand, A.: Evaluating distributed word representations for capturing semantics of biomedical concepts. In: Proceedings of BioNLP 2015. ACL (2015)

    Google Scholar 

  28. Tixier, A.J.P., Vazirgiannis, M., Hallowell, M.R.: Word embeddings for the construction domain. arXiv preprint arXiv:1610.09333 (2016)

  29. Wang, Y., et al.: A comparison of word embeddings for the biomedical natural language processing. arXiv preprint arXiv:1802.00400 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihong Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Y., Yu, S., Shi, M., Li, C. (2018). Extract Knowledge from Web Pages in a Specific Domain. In: Liu, W., Giunchiglia, F., Yang, B. (eds) Knowledge Science, Engineering and Management. KSEM 2018. Lecture Notes in Computer Science(), vol 11061. Springer, Cham. https://doi.org/10.1007/978-3-319-99365-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99365-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99364-5

  • Online ISBN: 978-3-319-99365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics