Abstract
A new notion of generalized rewrite theory suitable for symbolic reasoning and generalizing the standard notion in [3] is motivated and defined. Also, new requirements for symbolic executability of generalized rewrite theories that extend those in [8] for standard rewrite theories, including a generalized notion of coherence, are given. Finally, symbolic executability, including coherence, is both ensured and made available for a wide class of such theories by automatable theory transformations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
If \(B = B_{0} \uplus U\), with \(B_{0}\) associativity and/or commutativity axioms, and U identity axioms, the B-preregularity notion can be broadened by requiring only that: (i) \(\varSigma \) is \(B_{0}\)-preregular in the standard sense, so that \( ls (u\rho )= ls (v\rho )\) for all \(u=v \in B_{0}\) and substitutions \(\rho \); and (ii) the axioms U oriented as rules \(\vec {U}\) are sort-decreasing in the sense that \(u=v \in U \Rightarrow ls (u\rho ) \geqslant ls (v\rho )\) for each \(\rho \). Maude automatically checks B-preregularity of an OS signature \(\varSigma \) in this broader sense [4].
- 2.
See [24] for the more general definition of both convergence and the relation \(\rightarrow _{\vec {E},B}\) when \(\varSigma \) is B-preregular in the broader sense of Footnote 1.
- 3.
This is supported in Maude by the frozen operator attribute, which forbids rewrites below the specified argument positions. For example, when giving a rewriting semantics to a CCS-like process calculus, the process concatenation operator \(\_{\cdot }\_\), appearing in process expressions like \(a \cdot P\), will typically be frozen in its second argument.
- 4.
By definition this means that there is no function symbol f and position q such that: (i) \(p=q \cdot i \cdot q'\), (ii) \(u'|_{q}=f(u_{1},\ldots ,u_{n})\), and (iii) \(i \in \phi (f_{[s]}^{[s_{1}]\ldots [s_{n}]})\). Intuitively this means that the frozenness restrictions \(\phi \) do not block rewriting at position p in \(u'\).
- 5.
Admittedly, it is possible to allow more general rules with additional “rewrite conditions” of the form \(l \rightarrow r \; if \; \varphi \wedge \bigwedge _{i=1\ldots n} u_{i} \rightarrow v_{i}\) in a generalized rewrite theory. Then, generalized rewrite theories would specialize to standard rewrite theories whose rules also allow rewrite conditions. I leave this further generalization as future work.
- 6.
Recall that the strongly deterministic and convergent rules \(\vec {E}\) may be conditional. We are therefore using Definition 3 in its straightforward generalization to the conditional case.
References
Arusoaie, A., Lucanu, D., Rusu, V.: Symbolic execution based on language transformation. Comput. Lang. Syst. Struct. 44, 48–71 (2015)
Bae, K., Escobar, S., Meseguer, J.: Abstract logical model checking of infinite-state systems using narrowing. In: Rewriting Techniques and Applications (RTA 2013). LIPIcs, vol. 21, pp. 81–96. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2013)
Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories. Theor. Comput. Sci. 360(1–3), 386–414 (2006)
Clavel, M., et al.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1
Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3_22
Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 243–320. North-Holland, Amsterdam (1990)
Durán, F., Lucas, S., Meseguer, J.: Termination modulo combinations of equational theories. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp. 246–262. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04222-5_15
Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties of conditional order-sorted rewrite theories. J. Algebr. Logic Program. 81, 816–850 (2012)
Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-69962-7
Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007–2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03829-7_1
Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. J. Algebr. Logic Program. 81, 898–928 (2012)
Falke, S., Kapur, D.: Rewriting induction + Linear arithmetic = Decision procedure. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 241–255. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3_20
Futatsugi, K.: Fostering proof scores in CafeOBJ. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 1–20. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16901-4_1
Goguen, J., Meseguer, J.: Order-sorted algebra I: Equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci. 105, 217–273 (1992)
Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equations. SIAM J. Comput. 15, 1155–1194 (1986)
Kop, C., Nishida, N.: Automatic constrained rewriting induction towards verifying procedural programs. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 334–353. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12736-1_18
Lucanu, D., Rusu, V., Arusoaie, A., Nowak, D.: Verifying reachability-logic properties on rewriting-logic specifications. In: Martí-Oliet, N., Ölveczky, P.C., Talcott, C. (eds.) Logic, Rewriting, and Concurrency - Essays Dedicated to José Meseguer on the Occasion of His 65th Birthday. LNCS, vol. 9200, pp. 451–474. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23165-5_21
Lucas, S., Meseguer, J.: Normal forms and normal theories in conditional rewriting. J. Log. Algebr. Methods Program. 85(1), 67–97 (2016)
Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-64299-4_26
Meseguer, J.: Generalized rewrite theories and coherence completion. Technical report, University of Illinois Computer Science Department, March 2018. http://hdl.handle.net/2142/99546
Meseguer, J.: Variant-based satisfiability in initial algebras. Sci. Comput. Program. 154, 3–41 (2018)
Meseguer, J., Palomino, M., Martí-Oliet, N.: Equational abstractions. Theor. Comput. Sci. 403(2–3), 239–264 (2008)
Rocha, C., Meseguer, J., Muñoz, C.A.: Rewriting modulo SMT and open system analysis. J. Log. Algebr. Methods Program. 86, 269–297 (2017)
Skeirik, S., Meseguer, J.: Metalevel algorithms for variant satisfiability. J. Log. Algebr. Methods Program. 96, 81–110 (2018)
Skeirik, S., Stefanescu, A., Meseguer, J.: A constructor-based reachability logic for rewrite theories. In: Fioravanti, F., Gallagher, J. (eds.) LOPSTR 2017. LNCS, vol. 10855, pp. 207–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94460-9_12. Technical report, University of Illinois Computer Science Department, March 2017. http://hdl.handle.net/2142/95770
Ştefănescu, A., Ciobâcă, Ş., Mereuta, R., Moore, B.M., Şerbănută, T.F., Roşu, G.: All-path reachability logic. In: Dowek, G. (ed.) RTA 2014. LNCS, vol. 8560, pp. 425–440. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08918-8_29
Thati, P., Meseguer, J.: Symbolic reachability analysis using narrowing and its application to the verification of cryptographic protocols. J. High. Order Symb. Comput. 20(1–2), 123–160 (2007)
Viry, P.: Equational rules for rewriting logic. Theor. Comput. Sci. 285, 487–517 (2002)
Acknowledgments
I thank the referees for their constructive criticism and valuable suggestions to improve the paper. This work has been partially supported by NRL under contract number N00173-17-1-G002.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Meseguer, J. (2018). Generalized Rewrite Theories and Coherence Completion. In: Rusu, V. (eds) Rewriting Logic and Its Applications. WRLA 2018. Lecture Notes in Computer Science(), vol 11152. Springer, Cham. https://doi.org/10.1007/978-3-319-99840-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-99840-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99839-8
Online ISBN: 978-3-319-99840-4
eBook Packages: Computer ScienceComputer Science (R0)