Abstract
Fingerprint identification is an important part of forensic science (e.g. criminal investigations or identity verification). Friction ridge impressions left at the crime scene can be affected by the nonlinear distortion due to elasticity of the skin, pressure changes or finger movement during deposition. These deformations affect relative distances between fingerprint features such as minutiae point, ridge frequency and orientation, which eventually leads to difficulties in establishing a positive match between impressions of the same finger.
In this study we present preliminary results of the impact of fingerprint friction ridge distortion on NBIS Bozorth3 fingerprint matching algorithm. For this purpose special fingerprint database was developed. The database contained 5175 prints obtained from 40 volunteers. Experimental results reveal that the some types of fingerprint distortion (especially movement to right and left) impacts the recognition performance. The results of our studies can be used in future work on statistical friction ridge analysis and fingerprint algorithms robust to distortions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Porwik, P.: The modern techniques of latent fingerprint imaging. In: 2010 International Conference on Computer Information Systems and Industrial Management Applications (CISIM), Krackow, pp. 29–33 (2010)
Hong, L., Wan, Y., Jain, A.K.: Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 777–789 (1998)
Doroz, R., Wrobel, K., Porwik, P.: An accurate fingerprint reference point determination method based on curvature estimation of separated ridges. Int. J. Appl. Math. Comput. Sci. 28(1), 209–225 (2018)
Surmacz, K., Saeed, K., Rapta, P.: An improved algorithm for feature extraction from a fingerprint fuzzy image. Opt. Appl. 43(3), 515–527 (2013)
Maio, D., Maltoni, D.: Direct gray-scale minutiae detection in fingerprints. IEEE Trans. Pattern Anal. Mach. Intell. 19(1), 27–40 (1997)
Chen, X., Tian, J., Yang, X., Zhang, Y.: An algorithm for distorted fingerprint matching based on local triangle feature set. IEEE Trans. Inf. Forensics Secur. 1, 169–177 (2006)
Bazen, A., Gerez, S.: Fingerprint matching by thin-plate spline modelling of elastic deformations. Pattern Recogn. 36, 1859–1867 (2003)
Tabassi, E., Wilson, C., Watson, C.: Fingerprint Image Quality. NISTIR 7151 (2004)
Dvornychenko, V.N., Garris, M.D.: Summary of NIST Latent Fingerprint Testing Workshop. NISTIR 7377 (2006)
Si, X., Feng, J., Zhou, J.: Detecting fingerprint distortion from a single image. In: Proceedings IEEE International Workshop Information Forensics Security, pp. 1–6 (2012)
Ratha, N.K., Karu, K., Chen, S., Jain, A.K.: A real-time matching system for large fingerprint databases. IEEE TPAMI 18(8), 799–813 (1996)
Kovacs-Vajna, Z.M.: A fingerprint verification system based on triangular matching and dynamic time warping. IEEE TPAMI 22(11), 1266–1276 (2000)
Ross, A., Shah, S., Shah, J.: Image versus feature mosaicking: a case study in fingerprints. In: Proceedings SPIE, pp. 620208-1– 620208-12 (2006)
Ross, A., Dass, S., Jain, A.K.: A deformable model for fingerprint matching. Pattern Recogn. 38, 95–103 (2005)
Ross, A., Dass, S., Jain, A.K.: Fingerprint warping using ridge curve correspondences. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 19–30 (2006)
Cao, K., Yang, X., Tao, X., Li, P., Zang, Y., Tian, J.: Combining features for distorted fingerprint matching. J. Netw. Comput. Appl. 33, 258–267 (2010)
Chen, Y., Dass, D., Ross, A., Jain, A.K.: Fingerprint deformation models using minutiae locations and orientations. In: Proceedings IEEE Workshop on Applications of Computer Vision, pp. 150–155 (2005)
Cappelli, R., Maio, D., Maltoni, D.: Modelling plastic distortion in fingerprint images. In: Singh, S., Murshed, N., Kropatsch, W. (eds.) ICAPR 2001. LNCS, vol. 2013, pp. 371–378. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44732-6_38
Uz, T., Bebis, G., Erol, A., Prabhakar, S.: Minutiae-based template synthesis and matching for fingerprint authentication. Comput. Vis. Image Underst., 979–992 (2009)
Singh, R., Vatsa, M., Noore, A.: Improving verification accuracy by synthesis of locally enhanced biometric images and deformable model. Sig. Process. 87, 2746–2764 (2007)
Watson, C., Grother, P., Cassasent, D.: Distortion-tolerant filter for elastic-distorted fingerprint matching. In: Proceedings SPIE Optical Pattern Recognition, pp. 166–174 (2000)
Senior, A., Bolle, R.: Improved fingerprint matching by distortion removal. IEICE Trans. Inf. Syst. 84(7), 825–831 (2001)
Dabouei, A., Kazemi, H., Iranmanesh, S.M., Dawson, J., Nasrabadi, N.M.: Fingerprint distortion rectification using deep convolutional neural networks. In: The 11th IAPR International Conference on Biometrics, CoRR abs/1801.01198 (2018)
Watson, C.I.: NIST Special Database 24 Digital Video of Live-Scan Fingerprint Data, U.S. National Institute of Standards and Technology (1998)
Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: FVC2000: fingerprint verification competition. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 402–412 (2002)
Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: FVC2002: second fingerprint verification competition. In: Object Recognition Supported by User Interaction for Service Robots, vol. 3, pp. 811–814 (2002)
Maio, D., Maltoni, D., Cappelli, R., Wayman, J.L., Jain, A.K.: FVC2004: third fingerprint verification competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 1–7. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25948-0_1
Gao, Q., Zhang, X.: A study of distortion effects on fingerprint matching. Comput. Sci. Eng. 2(3), 37–42 (2012)
Si, X., Feng, J., Zhou, J., Luo, Y.: Detection and rectification of distorted fingerprints. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 555–568 (2015)
Ko, K., Salamon, W.J.: NIST Biometric Image Software (NBIS) https://www.nist.gov/services-resources/software/nist-biometric-image-software-nbis. Accessed 29 Mar 2018
http://www.neurotechnology.com/fingerprint-scanner-futronic-fs60.html. Accessed 29 Mar 2018
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Hamera, Ł., Więcław, Ł. (2018). A Study of Friction Ridge Distortion Effect on Automated Fingerprint Identification System – Database Evaluation. In: Saeed, K., Homenda, W. (eds) Computer Information Systems and Industrial Management. CISIM 2018. Lecture Notes in Computer Science(), vol 11127. Springer, Cham. https://doi.org/10.1007/978-3-319-99954-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-99954-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99953-1
Online ISBN: 978-3-319-99954-8
eBook Packages: Computer ScienceComputer Science (R0)