Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Revealing Bistability in Neurological Disorder Models By Solving Parametric Polynomial Systems Geometrically

  • Conference paper
  • First Online:
Artificial Intelligence and Symbolic Computation (AISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11110))

Abstract

Understanding the mechanisms of the brain is a common theme for both computational neuroscience and artificial intelligence. Machine learning technique, like artificial neural network, has been benefiting from a better understanding of the neuronal network in human brains. In the study of neurons, mathematical modeling plays a vital role. In this paper, we analyze the important phenomenon of bistability in neurological disorders modeled by ordinary differential equations in virtue of our recently developed method for solving bi-parametric polynomial systems. Unlike the algebraic symbolic approach, our numeric method solves parametric systems geometrically. With respect to the classical bifurcation analysis approach, our method naturally has good initial points thanks to the critical point technique in real algebraic geometry.

Special heuristic strategies are proposed for addressing the multiscale problem of parameters and variables occurring in biological models, as well as taking into account the fact that the variables representing concentrations are non-negative. Comparing with its symbolic algebraic counterparts, one merit of this geometrical method is that it may compute smaller boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bard Ermentrout, G., Terman, D.H.: Mathematical Foundations of Neuroscience. Springer, Heidelberg (2010). https://doi.org/10.1007/978-0-387-87708-2

    Book  MATH  Google Scholar 

  2. Bower, J.M. (ed.): 20 Years of Computational Neuroscience. Springer Series in Computational Neuroscience, vol. 9. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4614-1424-7

    Book  Google Scholar 

  3. Bradford, R.J., et al.: A case study on the parametric occurrence of multiple steady states. In: ISSAC 2017, pp. 45–52 (2017)

    Google Scholar 

  4. Chen, C., Wu, W.: A numerical method for analyzing the stability of bi-parametric biological systems. In: SYNASC 2016, pp. 91–98 (2016)

    Google Scholar 

  5. Chen, C., Wu, W.: A numerical method for computing border curves of bi-parametric real polynomial systems and applications. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS, vol. 9890, pp. 156–171. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45641-6_11

    Chapter  Google Scholar 

  6. Chen, C., Moreno Maza, M.: Quantifier elimination by cylindrical algebraic decomposition based on regular chains. J. Symb. Comput. 7(5), 74–93 (2016)

    Article  Google Scholar 

  7. Chen, C., Maza, M.M.: Semi-algebraic description of the equilibria of dynamical systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 101–125. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23568-9_9

    Chapter  Google Scholar 

  8. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4_17

    Chapter  Google Scholar 

  9. De Caluwé, J., Dupont, G.: The progression towards Alzheimer’s disease described as a bistable switch arising from the positive loop between amyloids and \({C}a^{2+}\). J. Theor. Biol. 331, 12–18 (2013)

    Article  Google Scholar 

  10. Garfinkel, A., Shevtsov, J., Guo, Y.: Modeling Life: The Mathematics of Biological Systems. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-59731-7

    Book  MATH  Google Scholar 

  11. Gerstner, W., Kistler, W.M., Naud, R., Paninski, L.: Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  12. Govaerts, W.: Numerical Methods for Bifurcations of Dynamical Equilibria. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Book  Google Scholar 

  13. Hassabis, D., Kumaran, D., Summerfield, C., Botvinick, M.: Neuroscience-inspired artificial intelligence. Neuron 95(2), 245–258 (2017)

    Article  Google Scholar 

  14. Hauenstein, J.D.: Numerically computing real points on algebraic sets. Acta Applicandae Mathematicae 125(1), 105–119 (2012)

    Article  Google Scholar 

  15. Hong, H., Tang, X., Xia, B.: Special algorithm for stability analysis of multistable biological regulatory systems. J. Symb. Comput. 70, 112–135 (2015)

    Article  MathSciNet  Google Scholar 

  16. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, Heidelberg (1995). https://doi.org/10.1007/978-1-4757-2421-9

    Book  MATH  Google Scholar 

  17. Lazard, D., Rouillier, F.: Solving parametric polynomial systems. J. Symb. Comput. 42(6), 636–667 (2007)

    Article  MathSciNet  Google Scholar 

  18. Li, T.Y.: Numerical solution of multivariate polynomial systems by homotopy continuation methods. Acta Numerica 6, 399–436 (1997)

    Article  MathSciNet  Google Scholar 

  19. Niu, W., Wang, D.: Algebraic approaches to stability analysis of biological systems. Math. Comput. Sci. 1(3), 507–539 (2008)

    Article  MathSciNet  Google Scholar 

  20. Ogasawara, H., Kawato, M.: The protein kinase M\(\zeta \) network as a bistable switch to store neuronal memory. BMC Syst. Biol. 4(1), 181 (2010)

    Article  Google Scholar 

  21. Érdi, P., Bhattacharya, B.S., Cochran, A.L. (eds.): Computational Neurology and Psychiatry. SSB, vol. 6. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49959-8

    Book  MATH  Google Scholar 

  22. Rouillier, F., Roy, M.F., Safey El Din, M.: Finding at least one point in each connected component of a real algebraic set defined by a single equation. J. Complex. 16(4), 716–750 (2000)

    Article  Google Scholar 

  23. Sacktor, T.C.: Memory maintenance by PKM\(\zeta \) – an evolutionary perspective. Mol. Brain 5(1), 31 (2012)

    Article  Google Scholar 

  24. Schwartz, R.: Biological Modeling and Simulation. The MIT Press, Cambridge (2008)

    Google Scholar 

  25. Sommese, A., Wampler, C.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific Press, Singapore (2005)

    Book  Google Scholar 

  26. Wang, D.M., Xia, B.: Stability analysis of biological systems with real solution classification. In: Kauers, M. (ed.) ISSAC 2005, pp. 354–361 (2005)

    Google Scholar 

  27. Wu, W., Reid, G.: Finding points on real solution components and applications to differential polynomial systems. ISSAC 2013, 339–346 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Wu, W., Reid, G., Feng, Y.: Computing real witness points of positive dimensional polynomial systems. Theor. Comput. Sci. 681, 217–231 (2017)

    Article  MathSciNet  Google Scholar 

  29. Yang, L., Xia, B.: Real solution classifications of a class of parametric semi-algebraic systems. In: A3L 2005, pp. 281–289 (2005)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the projects NSFC (11471307, 11671377, 61572024), and the Key Research Program of Frontier Sciences of CAS (QYZDB-SSW-SYS026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyuan Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, C., Wu, W. (2018). Revealing Bistability in Neurological Disorder Models By Solving Parametric Polynomial Systems Geometrically. In: Fleuriot, J., Wang, D., Calmet, J. (eds) Artificial Intelligence and Symbolic Computation. AISC 2018. Lecture Notes in Computer Science(), vol 11110. Springer, Cham. https://doi.org/10.1007/978-3-319-99957-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99957-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99956-2

  • Online ISBN: 978-3-319-99957-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics